Suppr超能文献

利用代谢工程改造酿酒酵母从头合成倍半萜 (+)-诺卡酮。

Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China.

出版信息

Microb Cell Fact. 2020 Feb 3;19(1):21. doi: 10.1186/s12934-020-1295-6.

Abstract

BACKGROUND

(+)-Nootkatone is a highly valued sesquiterpenoid compound, exhibiting a typical grapefruit aroma and various desired biological activities for use as aromatics and pharmaceuticals. The high commercial demand of (+)-nootkatone is predominately met by chemical synthesis, which entails the use of environmentally harmful reagents. Efficient synthesis of (+)-nootkatone via biotechnological approaches is thus urgently needed to satisfy its industrial demand. However, there are only a limited number of studies that report the de novo synthesis of (+)-nootkatone from simple carbon sources in microbial cell factories, and with relatively low yield.

RESULTS

As the direct precursor of (+)-nootkatone biosynthesis, (+)-valencene was first produced in large quantities in Saccharomyces cerevisiae by overexpressing (+)-valencene synthase CnVS of Callitropsis nootkatensis in combination with various mevalonate pathway (MVA) engineering strategies, including the expression of CnVS and farnesyl diphosphate synthase (ERG20) as a fused protein, overexpression of a truncated form of the rate-limiting enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (tHMG1), and downregulating the squalene synthase enzyme (ERG9). These approaches altogether brought the production of (+)-valencene to 217.95 mg/L. Secondly, we addressed the (+)-valencene oxidation by overexpressing the Hyoscyamus muticus premnaspirodiene oxygenase (HPO) variant (V482I/A484I) and cytochrome P450 reductase (ATR1) from Arabidopsis thaliana. However, (+)-valencene was predominantly oxidized to β-nootkatol and only minor amounts of (+)-nootkatone (9.66 mg/L) were produced. We further tackled the oxidation of β-nootkatol to (+)-nootkatone by screening various dehydrogenases. Our results showed that the short-chain dehydrogenase/reductase (SDR) superfamily dehydrogenases ZSD1 of Zingiber zerumbet and ABA2 of Citrus sinensis were capable of effectively catalyzing β-nootkatol oxidation to (+)-nootkatone. The yield of (+)-nootkatone increased to 59.78 mg/L and 53.48 mg/L by additional overexpression of ZSD1 and ABA2, respectively.

CONCLUSION

We successfully constructed the (+)-nootaktone biosynthesis pathway in S. cerevisiae by overexpressing the (+)-valencene synthase CnVS, cytochrome P450 monooxygenase HPO, and SDR family dehydrogenases combined with the MVA pathway engineering, providing a solid basis for the whole-cell production of (+)-nootkatone. The two effective SDR family dehydrogenases tested in this study will serve as valuable enzymatic tools in further optimizing (+)-nootkatone production.

摘要

背景

(+)-诺卡酮是一种高价值的倍半萜化合物,具有典型的葡萄柚香气和各种所需的生物活性,可用作香料和药物。(+)-诺卡酮的高商业需求主要通过化学合成来满足,这需要使用对环境有害的试剂。因此,迫切需要通过生物技术途径高效合成(+)-诺卡酮,以满足其工业需求。然而,只有少数研究报告了在微生物细胞工厂中从简单碳源从头合成(+)-诺卡酮,并且产率相对较低。

结果

作为(+)-诺卡酮生物合成的直接前体,(+)-柠檬烯首先在酿酒酵母中大量产生,方法是过表达加利福尼亚诺卡酮 Callitropsis nootkatensis 的(+)-柠檬烯合酶 CnVS ,并结合各种甲羟戊酸途径(MVA)工程策略,包括将 CnVS 和法呢基二磷酸合酶(ERG20)表达为融合蛋白,过表达限速酶 3-羟-3-甲基戊二酰辅酶 A(HMG-CoA)还原酶(tHMG1)的截断形式,以及下调角鲨烯合酶酶(ERG9)。这些方法使(+)-柠檬烯的产量达到 217.95 mg/L。其次,我们通过过表达来自拟南芥的 Hyoscyamus muticus 普雷纳斯派罗迪恩氧化酶(HPO)变体(V482I/A484I)和细胞色素 P450 还原酶(ATR1)来解决(+)-柠檬烯的氧化问题。然而,(+)-柠檬烯主要被氧化为β-诺卡酮,仅产生少量(+)-诺卡酮(9.66 mg/L)。我们进一步通过筛选各种脱氢酶来解决β-诺卡酮氧化为(+)-诺卡酮的问题。我们的结果表明,姜黄 Zingiber zerumbet 的短链脱氢酶/还原酶(SDR)超家族脱氢酶 ZSD1 和柑橘 Citrus sinensis 的 ABA2 能够有效地催化β-诺卡酮氧化为(+)-诺卡酮。通过分别额外过表达 ZSD1 和 ABA2,(+)-诺卡酮的产量分别增加到 59.78 mg/L 和 53.48 mg/L。

结论

我们通过过表达(+)-柠檬烯合酶 CnVS、细胞色素 P450 单加氧酶 HPO 和 SDR 家族脱氢酶,并结合 MVA 途径工程,在酿酒酵母中成功构建了(+)-诺卡酮生物合成途径,为(+)-诺卡酮的全细胞生产提供了坚实的基础。本研究中测试的两种有效的 SDR 家族脱氢酶将作为进一步优化(+)-诺卡酮生产的有价值的酶学工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1398/6998195/7baed668d92f/12934_2020_1295_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验