Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom.
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3819-3827. doi: 10.1073/pnas.1920403117. Epub 2020 Feb 3.
Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1 is more efficient than wild-type Syt1 (Syt1) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1 knockout background) and dominant-interference (Syt1 background) conditions. Thus, we conclude that Ca-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.
突触结合蛋白 1(Syt1)作为快速 Ca 释放传感器和自发性及延迟非同步释放的抑制剂(夹具),使神经递质释放与动作电位(APs)同步。虽然 Syt1 的 Ca 激活机制已得到很好的描述,但 Syt1 如何钳制递质释放仍然是个谜。本研究表明,C2B 结构域依赖性寡聚化提供了 Syt1 钳制功能的分子基础。这是通过研究一种设计的突变(F349A)得出的,该突变选择性地破坏了 Syt1 的寡聚化。本研究使用新皮层突触中的荧光成像和电生理学相结合的方法,表明 F349A 突变体 Syt1(F349A)比野生型 Syt1(Syt1)更有效地触发同步递质释放,但在挽救(Syt1 敲除背景)和显性干扰(Syt1 背景)条件下,都不能钳制自发性和突触结合蛋白 7(Syt7)介导的非同步释放成分。因此,我们得出结论,作为胞吐夹具的 Ca 敏感 Syt1 寡聚体对于维持不同递质释放模式之间的平衡至关重要。