Suppr超能文献

使用截断点和柯尔莫哥洛夫-斯米尔诺夫距离 (kosmic) 从混合分布中估计参考区间。

Reference Interval Estimation from Mixed Distributions using Truncation Points and the Kolmogorov-Smirnov Distance (kosmic).

机构信息

Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany.

Center of Medical Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany.

出版信息

Sci Rep. 2020 Feb 3;10(1):1704. doi: 10.1038/s41598-020-58749-2.

Abstract

Appropriate reference intervals are essential when using laboratory test results to guide medical decisions. Conventional approaches for the establishment of reference intervals rely on large samples from healthy and homogenous reference populations. However, this approach is associated with substantial financial and logistic challenges, subject to ethical restrictions in children, and limited in older individuals due to the high prevalence of chronic morbidities and medication. We implemented an indirect method for reference interval estimation, which uses mixed physiological and abnormal test results from clinical information systems, to overcome these restrictions. The algorithm minimizes the difference between an estimated parametrical distribution and a truncated part of the observed distribution, specifically, the Kolmogorov-Smirnov-distance between a hypothetical Gaussian distribution and the observed distribution of test results after Box-Cox-transformation. Simulations of common laboratory tests with increasing proportions of abnormal test results show reliable reference interval estimations even in challenging simulation scenarios, when <20% test results are abnormal. Additionally, reference intervals generated using samples from a university hospital's laboratory information system, with a gradually increasing proportion of abnormal test results remained stable, even if samples from units with a substantial prevalence of pathologies were included. A high-performance open-source C++ implementation is available at https://gitlab.miracum.org/kosmic.

摘要

在使用实验室检测结果来指导医学决策时,适当的参考区间至关重要。传统的参考区间建立方法依赖于来自健康且同质的参考人群的大量样本。然而,这种方法存在着巨大的财务和后勤方面的挑战,在儿童中受到伦理限制,并且在老年人中由于慢性疾病和药物治疗的高患病率而受到限制。我们实施了一种间接的参考区间估计方法,该方法利用临床信息系统中的混合生理和异常检测结果来克服这些限制。该算法将估计的参数分布与观察到的分布的截断部分之间的差异最小化,特别是在 Box-Cox 转换后,假设的高斯分布与观察到的检测结果分布之间的柯尔莫哥洛夫-斯米尔诺夫距离。对常见实验室检测的模拟表明,即使在具有挑战性的模拟场景中,当异常检测结果的比例<20%时,也可以进行可靠的参考区间估计。此外,使用来自大学医院实验室信息系统的样本生成的参考区间,其异常检测结果的比例逐渐增加,即使包括具有大量病理的单位的样本,参考区间也保持稳定。一个高性能的开源 C++实现可在 https://gitlab.miracum.org/kosmic 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c45/6997422/8bcbcae85105/41598_2020_58749_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验