Suppr超能文献

基于结构的药物发现中量子力学的下一步是什么?

What Next for Quantum Mechanics in Structure-Based Drug Discovery?

机构信息

Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK.

出版信息

Methods Mol Biol. 2020;2114:339-353. doi: 10.1007/978-1-0716-0282-9_20.

Abstract

There is significant potential for electronic structure methods to improve the quality of the predictions furnished by the tools of computer-aided drug design, which typically rely on empirically derived functions. In this perspective, we consider some recent examples of how quantum mechanics has been applied in predicting protein-ligand geometries, protein-ligand binding affinities and ligand strain on binding. We then outline several significant developments in quantum mechanics methodology likely to influence these approaches: in particular, we note the advent of more computationally expedient ab initio quantum mechanical methods that can provide chemical accuracy for larger molecular systems than hitherto possible. We highlight the emergence of increasingly accurate semiempirical quantum mechanical methods and the associated role of machine learning and molecular databases in their development. Indeed, the convergence of improved algorithms for solving and analyzing electronic structure, modern machine learning methods, and increasingly comprehensive benchmark data sets of molecular geometries and energies provides a context in which the potential of quantum mechanics will be increasingly realized in driving future developments and applications in structure-based drug discovery.

摘要

电子结构方法具有显著的潜力,可以提高计算机辅助药物设计工具所提供的预测质量,这些工具通常依赖于经验导出的函数。在这个角度下,我们考虑了一些最近的例子,说明量子力学如何应用于预测蛋白质-配体的几何形状、蛋白质-配体的结合亲和力和配体在结合时的应变。然后,我们概述了量子力学方法中几个可能影响这些方法的重要发展:特别是,我们注意到更具计算效率的从头算量子力学方法的出现,这些方法可以为比以往更大的分子体系提供化学精度。我们强调了越来越精确的半经验量子力学方法的出现,以及机器学习和分子数据库在其发展中的作用。事实上,解决和分析电子结构的改进算法、现代机器学习方法以及分子几何形状和能量的日益全面的基准数据集的融合,为量子力学的潜力在推动基于结构的药物发现的未来发展和应用方面提供了一个背景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验