Turab Ali, Nescolarde-Selva Josué-Antonio, Ullah Farhan, Montoyo Andrés, Alfiniyah Cicik, Sintunavarat Wutiphol, Rizk Doaa, Zaidi Shujaat Ali
School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072 China.
Department of Software and Computing Systems, University of Alicante, Alicante, Spain.
Cogn Neurodyn. 2025 Dec;19(1):66. doi: 10.1007/s11571-025-10247-9. Epub 2025 Apr 25.
Modeling animal decision-making requires mathematical rigor and computational analysis to capture underlying cognitive mechanisms. This study presents a cognitive model for rat decision-making behavior in -mazes by combining stochastic methods with deep neural architectures. The model adapts Wyckoff's stochastic framework, originally grounded in Bush's discrimination learning theory, to describe probabilistic transitions between directional choices under reinforcement contingencies. The existence and uniqueness of solutions are demonstrated via fixed-point theorems, ensuring the formulation is well-posed. The asymptotic properties of the system are examined under boundary conditions to understand the convergence behavior of decision probabilities across trials. Empirical validation is performed using Monte Carlo simulations to compare expected trajectories with the model's predictive output. The dataset comprises spatial trajectory recordings of rats navigating toward food rewards under controlled experimental protocols. Trajectories are preprocessed through statistical filtering, augmented to address data imbalance, and embedded using t-SNE to visualize separability across behavioral states. A hybrid convolutional-recurrent neural network (CNN-LSTM) is trained on these representations and achieves a classification accuracy of 82.24%, outperforming conventional machine learning models, including support vector machines and random forests. In addition to discrete choice prediction, the network reconstructs continuous paths, enabling full behavioral sequence modeling from partial observations. The integration of stochastic dynamics and deep learning develops a computational basis for analyzing spatial decision-making in animal behavior. The proposed approach contributes to computational models of cognition by linking observable behavior to internal processes in navigational tasks.
对动物决策进行建模需要数学上的严谨性和计算分析,以捕捉潜在的认知机制。本研究通过将随机方法与深度神经架构相结合,提出了一种用于大鼠在T迷宫中决策行为的认知模型。该模型采用了最初基于布什辨别学习理论的威科夫随机框架,来描述强化条件下方向选择之间的概率转换。通过不动点定理证明了解的存在性和唯一性,确保了该公式的适定性。在边界条件下研究了系统的渐近性质,以了解各试验中决策概率的收敛行为。使用蒙特卡罗模拟进行实证验证,以将预期轨迹与模型的预测输出进行比较。数据集包括在受控实验方案下大鼠朝着食物奖励导航的空间轨迹记录。轨迹通过统计滤波进行预处理,进行扩充以解决数据不平衡问题,并使用t-SNE进行嵌入,以可视化不同行为状态之间的可分离性。在这些表示上训练了一个混合卷积循环神经网络(CNN-LSTM),其分类准确率达到82.24%,优于包括支持向量机和随机森林在内的传统机器学习模型。除了离散选择预测外,该网络还能重建连续路径,从而能够从部分观测中进行完整的行为序列建模。随机动力学与深度学习的整合为分析动物行为中的空间决策奠定了计算基础。所提出的方法通过将可观察到的行为与导航任务中的内部过程联系起来,为认知计算模型做出了贡献。