Suppr超能文献

一种节省空间的可视化筛选方法 FAST,用于生成转基因大豆。

A space-saving visual screening method, FAST, for generating transgenic soybean.

机构信息

Graduate School of Science, Kyoto University, Kyoto, Japan.

Faculty of Science and Engineering, Konan University, Kobe, Japan.

出版信息

Plant Signal Behav. 2020;15(2):1722911. doi: 10.1080/15592324.2020.1722911. Epub 2020 Feb 5.

Abstract

Establishing homozygous transgenic lines of is time-consuming and laborious. To overcome the difficulties, we developed a powerful method for selecting transgenic soybean plants, Fluorescence-Accumulating Seed Technology (GmFAST). GmFAST uses a marker composed of a soybean seed-specific promoter coupled to the gene, which encodes a GFP fusion of the oil-body membrane protein OLEOSIN1 of . We introduced the marker gene into cotyledonary nodes of Kariyutaka via Agrobacterium-mediated transformation and regenerated heterozygous transgenic plants. OLE1-GFP-expressing soybean seeds can be selected nondestructively with a fluorescence stereomicroscope. Among T seeds, the most strongly fluorescent seeds were homozygous. GmFAST enables to reduce the growing space by one-tenth compared with the conventional method. With this method, we obtained the soybean line that had higher levels of seed pods and oil production. The phenotypes are presumably caused by overexpression of Glyma13g30950, suggesting that Glyma13g30950 regulates seed pod formation in soybean plants. An increase in seed pod number was confirmed in plants that overexpressed the Arabidopsis ortholog of Glyma13g30950, .Taken together, GmFAST provides a space-saving visual and nondestructive screening method for soybean transformation, thereby increasing the chance of developing useful soybean lines.

摘要

建立纯合转基因系 是一项既耗时又费力的工作。为了克服这些困难,我们开发了一种强大的大豆转基因植株选择方法,荧光积累种子技术(GmFAST)。GmFAST 使用由大豆种子特异性启动子与编码油体膜蛋白 OLEOSIN1 的 GFP 融合的基因组成的标记,我们通过农杆菌介导的转化将标记基因导入 Kariyutaka 的子叶节点,并再生了杂合转基因植株。OLE1-GFP 表达的大豆种子可以用荧光体视显微镜进行非破坏性选择。在 T 种子中,荧光最强的种子是纯合的。与传统方法相比,GmFAST 可将生长空间减少十分之一。使用这种方法,我们获得了具有更高豆荚和产油量的大豆品系。这些表型可能是由于 Glyma13g30950 的过表达引起的,表明 Glyma13g30950 调节大豆植株的豆荚形成。在过表达拟南芥 Glyma13g30950 同源物的 植株中,确认了豆荚数的增加。总之,GmFAST 为大豆转化提供了一种节省空间的可视化和非破坏性筛选方法,从而增加了开发有用大豆品系的机会。

相似文献

1
A space-saving visual screening method, FAST, for generating transgenic soybean.
Plant Signal Behav. 2020;15(2):1722911. doi: 10.1080/15592324.2020.1722911. Epub 2020 Feb 5.
2
Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.
Plant Physiol. 2017 Apr;173(4):2208-2224. doi: 10.1104/pp.16.01610. Epub 2017 Feb 9.
3
Overexpression of soybean GmPLDγ enhances seed oil content and modulates fatty acid composition in transgenic Arabidopsis.
Plant Sci. 2020 Jan;290:110298. doi: 10.1016/j.plantsci.2019.110298. Epub 2019 Oct 6.
4
Soybean GmMYB73 promotes lipid accumulation in transgenic plants.
BMC Plant Biol. 2014 Mar 24;14:73. doi: 10.1186/1471-2229-14-73.
5
Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.
Mol Genet Genomics. 2018 Apr;293(2):401-415. doi: 10.1007/s00438-017-1393-2. Epub 2017 Nov 14.
7
Natural variation and selection in GmSWEET39 affect soybean seed oil content.
New Phytol. 2020 Feb;225(4):1651-1666. doi: 10.1111/nph.16250. Epub 2019 Nov 14.
10
Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds.
Transgenic Res. 2011 Aug;20(4):841-55. doi: 10.1007/s11248-010-9461-y. Epub 2010 Nov 11.

引用本文的文献

1
SeedSeg: image-based transgenic seed counting for segregation analysis of T-DNA loci.
Plant Methods. 2025 Jun 24;21(1):87. doi: 10.1186/s13007-025-01406-4.
2
Progress in Soybean Genetic Transformation Over the Last Decade.
Front Plant Sci. 2022 Jun 9;13:900318. doi: 10.3389/fpls.2022.900318. eCollection 2022.

本文引用的文献

2
A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean.
Plant Cell Physiol. 2014 Oct;55(10):1763-71. doi: 10.1093/pcp/pcu107. Epub 2014 Aug 9.
3
Expression of storage-protein genes during soybean seed development.
Planta. 1981 Oct;153(2):130-9. doi: 10.1007/BF00384094.
4
Identification and characterization of DNA clones encoding group-II glycinin subunits.
Theor Appl Genet. 1985 Aug;70(5):510-9. doi: 10.1007/BF00305984.
5
Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.
Theor Appl Genet. 2013 Sep;126(9):2289-97. doi: 10.1007/s00122-013-2135-4. Epub 2013 Jun 8.
6
How important are transposons for plant evolution?
Nat Rev Genet. 2013 Jan;14(1):49-61. doi: 10.1038/nrg3374.
7
A non-destructive screenable marker, OsFAST, for identifying transgenic rice seeds.
Plant Signal Behav. 2011 Oct;6(10):1454-6. doi: 10.4161/psb.6.10.17344. Epub 2011 Oct 1.
9
Oil-body-membrane proteins and their physiological functions in plants.
Biol Pharm Bull. 2010;33(3):360-3. doi: 10.1248/bpb.33.360.
10
A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana.
Plant J. 2010 Feb 1;61(3):519-28. doi: 10.1111/j.1365-313X.2009.04060.x. Epub 2009 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验