Department of Psychological Science, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA, 30144, USA.
Department of Psychology, University of New Mexico, Albuquerque, USA.
Psychol Res. 2021 Mar;85(2):660-678. doi: 10.1007/s00426-019-01261-8. Epub 2020 Feb 4.
The possibility that interference between motor responses contributes to dual-task costs has long been neglected, yet is supported by several recent studies. There are two competing hypotheses regarding this response-related interference. The motor-bottleneck hypothesis asserts that the motor stage of Task 1 triggers a refractory period that delays the motor stage of Task 2. The response-monitoring hypothesis asserts that monitoring of the Task-1 motor response delays the response-selection stage of Task 2. Both hypotheses predict lengthening of Task-2 response time (RT2) when Task 1 requires motor processing relative to when it does not. However, they assume different loci for the response-related bottleneck, and therefore make different predictions regarding (a) the interaction between Task-1 motor requirement and the Task-2 difficulty effect as measured by RT2 and (b) the premotoric durations and motoric durations of Task 2 as measured by lateralized readiness potentials (LRPs). To test these predictions, we conducted two experiments manipulating the Task-1 motor requirement (Go vs. NoGo) and Task-2 response-selection difficulty, as well as the stimulus-onset asynchrony (SOA). Task-1 motor processing significantly lengthened RT2, suggesting response-related interference. Importantly, the Task-1 motor response reduced the Task-2 difficulty effect at the short SOA, indicating postponement of the Task-2 motor stage, consistent with the motor-bottleneck hypothesis. Further consistent with the motor-bottleneck hypothesis, the Task-2 LRP indicated a consistent premotoric duration of Task 2 regardless of Task-1 motor requirement. These results are difficult to reconcile with the response-monitoring hypotheses, which places the response-related bottleneck before the response-selection stage of Task 2. The results also have important implications regarding use of locus-of-slack logic in PRP studies.
运动反应之间的干扰可能导致双重任务成本,这一观点长期以来一直被忽视,但最近的几项研究支持这一观点。关于这种与反应相关的干扰有两种相互竞争的假设。运动瓶颈假说认为,任务 1 的运动阶段触发了一个不应期,从而延迟了任务 2 的运动阶段。反应监控假说则认为,对任务 1 运动反应的监控延迟了任务 2 的反应选择阶段。这两个假设都预测当任务 1 需要运动处理时,任务 2 的反应时间 (RT2) 会延长,而当任务 1 不需要运动处理时则不会。然而,它们假设了反应相关瓶颈的不同位置,因此对(a)任务 1 运动要求与任务 2 难度效应之间的相互作用,以及(b)任务 2 的预运动持续时间和运动持续时间(通过侧向准备电位 (LRP) 测量)做出了不同的预测。为了检验这些预测,我们进行了两项实验,操纵任务 1 的运动要求(Go 与 NoGo)和任务 2 的反应选择难度,以及刺激呈现的异步性 (SOA)。任务 1 的运动处理显著延长了 RT2,表明存在与反应相关的干扰。重要的是,在短 SOA 下,任务 1 的运动反应减少了任务 2 的难度效应,这表明任务 2 的运动阶段被推迟,与运动瓶颈假说一致。进一步与运动瓶颈假说一致的是,任务 2 的 LRP 表明任务 2 的预运动持续时间始终不变,而与任务 1 的运动要求无关。这些结果与反应监控假说难以调和,该假说将与反应相关的瓶颈置于任务 2 的反应选择阶段之前。这些结果对于在 PRP 研究中使用松弛点逻辑也具有重要意义。