Guardabasso V, De Nicolao G, Rocchetti M, Rodbard D
Biomathematics and Biostatistics Unit, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
Am J Physiol. 1988 Dec;255(6 Pt 1):E775-84. doi: 10.1152/ajpendo.1988.255.6.E775.
A versatile method is presented for generating synthetic hormonal time series, containing peaks at known locations, to be used to objectively evaluate both the false-negative (F-) and false-positive (F+) statistical error rates of computerized pulse-detection algorithms. Synthetic data are generated by assuming hormone secretion to occur as a succession of instantaneous release pulses, distributed as Poisson events, separated by quiescent intervals. The pulses are convolved to simulate cumulation of consecutive events and clearance of the hormone. Randomly generated errors, corresponding in magnitude to typical experimental measurement error, are then added to the convolved series. The choice of different values for simulation parameters (e.g., frequency and amplitude of pulses) allows one to emulate some typical physiological patterns of hormone secretion for luteinizing hormone, growth hormone, and thyrotropin or other hormones. Various subsets can be extracted from a simulated time series to study the effect of sampling frequency on the detection of pulses. We show that in sampled series the "observable frequency" of pulses is less than the true nominal frequency. Methods for evaluating pulse-detection algorithms and expressing the results are presented. Simulations of LH secretion were analyzed with the program DETECT. We show that minimizing F+ error rates only might lead to excessively high F- rates. A proper choice of sampling frequency and program probability levels can be made to provide acceptable F+ and F- error rates for various patterns of hormone secretion.
本文提出了一种通用方法,用于生成合成激素时间序列,该序列在已知位置包含峰值,用于客观评估计算机脉冲检测算法的假阴性(F-)和假阳性(F+)统计错误率。通过假设激素分泌以一系列瞬时释放脉冲的形式发生,这些脉冲作为泊松事件分布,由静止间隔分隔,来生成合成数据。对脉冲进行卷积以模拟连续事件的累积和激素的清除。然后将随机生成的、幅度与典型实验测量误差相对应的误差添加到卷积序列中。通过选择不同的模拟参数值(例如,脉冲频率和幅度),可以模拟促黄体生成素、生长激素、促甲状腺激素或其他激素的一些典型生理分泌模式。可以从模拟时间序列中提取各种子集,以研究采样频率对脉冲检测的影响。我们表明,在采样序列中,脉冲的“可观测频率”低于真实标称频率。本文还介绍了评估脉冲检测算法和表达结果的方法。使用DETECT程序对促黄体生成素分泌的模拟进行了分析。我们表明,仅最小化F+错误率可能会导致过高的F-率。可以适当选择采样频率和程序概率水平,为各种激素分泌模式提供可接受的F+和F-错误率。