Suppr超能文献

肾脏病学中的人工智能:人工智能如何增强肾病学家的智能?

Artificial Intelligence in Nephrology: How Can Artificial Intelligence Augment Nephrologists' Intelligence?

作者信息

Xie Guotong, Chen Tiange, Li Yingxue, Chen Tingyu, Li Xiang, Liu Zhihong

机构信息

Ping An Healthcare Technology, Beijing, China.

National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.

出版信息

Kidney Dis (Basel). 2020 Jan;6(1):1-6. doi: 10.1159/000504600. Epub 2019 Dec 3.

Abstract

BACKGROUND

Artificial intelligence (AI) now plays a critical role in almost every area of our daily lives and academic disciplines due to the growth of computing power, advances in methods and techniques, and the explosion of the amount of data; medicine is not an exception. Rather than replacing clinicians, AI is augmenting the intelligence of clinicians in diagnosis, prognosis, and treatment decisions.

SUMMARY

Kidney disease is a substantial medical and public health burden globally, with both acute kidney injury and chronic kidney disease bringing about high morbidity and mortality as well as a huge economic burden. Even though the existing research and applied works have made certain contributions to more accurate prediction and better understanding of histologic pathology, there is a lot more work to be done and problems to solve.

KEY MESSAGES

AI applications of diagnostics and prognostics for high-prevalence and high-morbidity types of nephropathy in medical-resource-inadequate areas need special attention; high-volume and high-quality data need to be collected and prepared; a consensus on ethics and safety in the use of AI technologies needs to be built.

摘要

背景

由于计算能力的增长、方法和技术的进步以及数据量的爆炸式增长,人工智能(AI)如今在我们日常生活和学术学科的几乎每个领域都发挥着关键作用;医学也不例外。人工智能并非取代临床医生,而是在诊断、预后和治疗决策方面增强临床医生的智能。

总结

肾病是全球重大的医学和公共卫生负担,急性肾损伤和慢性肾病都带来了高发病率和死亡率以及巨大的经济负担。尽管现有研究和应用工作为更准确的预测和对组织病理学的更好理解做出了一定贡献,但仍有许多工作要做和问题要解决。

关键信息

在医疗资源不足的地区,针对高流行率和高发病率的肾病类型进行诊断和预后的人工智能应用需要特别关注;需要收集和准备大量高质量数据;需要就人工智能技术使用中的伦理和安全达成共识。

相似文献

1
Artificial Intelligence in Nephrology: How Can Artificial Intelligence Augment Nephrologists' Intelligence?
Kidney Dis (Basel). 2020 Jan;6(1):1-6. doi: 10.1159/000504600. Epub 2019 Dec 3.
2
Artificial intelligence enabled applications in kidney disease.
Semin Dial. 2021 Jan;34(1):5-16. doi: 10.1111/sdi.12915. Epub 2020 Sep 13.
3
Toward generalizing the use of artificial intelligence in nephrology and kidney transplantation.
J Nephrol. 2023 May;36(4):1087-1100. doi: 10.1007/s40620-022-01529-0. Epub 2022 Dec 22.
5
[Artificial intelligence: a new journey in nephrology].
Zhonghua Yi Xue Za Zhi. 2023 May 16;103(18):1355-1358. doi: 10.3760/cma.j.cn112137-20221201-02537.
6
Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation.
J Clin Med. 2020 Apr 13;9(4):1107. doi: 10.3390/jcm9041107.
7
Artificial intelligence: a new field of knowledge for nephrologists?
Clin Kidney J. 2023 Jul 29;16(12):2314-2326. doi: 10.1093/ckj/sfad182. eCollection 2023 Dec.
9
Big data in nephrology: Are we ready for the change?
Nephrology (Carlton). 2019 Nov;24(11):1097-1102. doi: 10.1111/nep.13636. Epub 2019 Aug 5.

引用本文的文献

3
Advancing the application of the analytical renal pathology system in allograft IgA nephropathy patients.
Ren Fail. 2024 Dec;46(1):2322043. doi: 10.1080/0886022X.2024.2322043. Epub 2024 Feb 29.
4
Innovating Personalized Nephrology Care: Exploring the Potential Utilization of ChatGPT.
J Pers Med. 2023 Dec 4;13(12):1681. doi: 10.3390/jpm13121681.
6
Artificial intelligence in renal pathology: Current status and future.
Biomol Biomed. 2023 Mar 16;23(2):225-234. doi: 10.17305/bjbms.2022.8318.
8
Artificial Intelligence-Assisted Renal Pathology: Advances and Prospects.
J Clin Med. 2022 Aug 22;11(16):4918. doi: 10.3390/jcm11164918.
9
Prediction models used in the progression of chronic kidney disease: A scoping review.
PLoS One. 2022 Jul 26;17(7):e0271619. doi: 10.1371/journal.pone.0271619. eCollection 2022.

本文引用的文献

1
Deep Learning-Based Histopathologic Assessment of Kidney Tissue.
J Am Soc Nephrol. 2019 Oct;30(10):1968-1979. doi: 10.1681/ASN.2019020144. Epub 2019 Sep 5.
2
Computational Segmentation and Classification of Diabetic Glomerulosclerosis.
J Am Soc Nephrol. 2019 Oct;30(10):1953-1967. doi: 10.1681/ASN.2018121259. Epub 2019 Sep 5.
3
A clinically applicable approach to continuous prediction of future acute kidney injury.
Nature. 2019 Aug;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31.
4
Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy.
Am J Kidney Dis. 2019 Sep;74(3):300-309. doi: 10.1053/j.ajkd.2019.02.016. Epub 2019 Apr 25.
5
Big science and big data in nephrology.
Kidney Int. 2019 Jun;95(6):1326-1337. doi: 10.1016/j.kint.2018.11.048. Epub 2019 Mar 5.
6
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
8
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nat Med. 2018 Nov;24(11):1716-1720. doi: 10.1038/s41591-018-0213-5. Epub 2018 Oct 22.
9
Detecting repeated cancer evolution from multi-region tumor sequencing data.
Nat Methods. 2018 Sep;15(9):707-714. doi: 10.1038/s41592-018-0108-x. Epub 2018 Aug 31.
10
Clinically applicable deep learning for diagnosis and referral in retinal disease.
Nat Med. 2018 Sep;24(9):1342-1350. doi: 10.1038/s41591-018-0107-6. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验