Suppr超能文献

缺氧调控 bFGF 修饰的原代胚胎神经干细胞修复脊髓损伤的机制及自噬作用。

The repair and autophagy mechanisms of hypoxia-regulated bFGF-modified primary embryonic neural stem cells in spinal cord injury.

机构信息

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.

Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.

出版信息

Stem Cells Transl Med. 2020 May;9(5):603-619. doi: 10.1002/sctm.19-0282. Epub 2020 Feb 6.

Abstract

There is no effective strategy for the treatment of spinal cord injury (SCI), a devastating condition characterized by severe hypoxia and ischemic insults. In this study, we investigated the histology and pathophysiology of the SCI milieu in a rat model and found that areas of hypoxia were unevenly interspersed in compressed SCI. With this new knowledge, we generated embryonic neural stem cells (NSCs) expressing basic fibroblast growth factor (bFGF) under the regulation of five hypoxia-responsive elements (5HRE) using a lentiviral vector (LV-5HRE-bFGF-NSCs) to specifically target these hypoxic loci. SCI models treated with bFGF expressed by the LV-5HRE-bFGF-NSCs viral vector demonstrated improved recovery, increased neuronal survival, and inhibited autophagy in spinal cord lesions in the rat model due to the reversal of hypoxic conditions at day 42 after injury. Furthermore, improved functional restoration of SCI with neuron regeneration was achieved in vivo, accompanied by glial scar inhibition and the evidence of axon regeneration across the scar boundary. This is the first study to illustrate the presence of hypoxic clusters throughout the injury site of compressed SCI and the first to show that the transplantation of LV-5HRE-bFGF-NSCs to target this hypoxic microenvironment enhanced the recovery of neurological function after SCI in rats; LV-5HRE-bFGF-NSCs may therefore be a good candidate to evaluate cellular SCI therapy in humans.

摘要

目前针对脊髓损伤(SCI)还没有有效的治疗策略,这种疾病会导致严重的缺氧和缺血性损伤。在这项研究中,我们通过大鼠模型研究了 SCI 微环境的组织学和病理生理学,发现缺氧区域在受压的 SCI 中不均匀地散布。基于这一新发现,我们利用慢病毒载体(LV-5HRE-bFGF-NSCs)生成了表达碱性成纤维细胞生长因子(bFGF)的胚胎神经干细胞(NSCs),该载体受五个缺氧反应元件(5HRE)的调控,可特异性地针对这些低氧位点。在 SCI 模型中,通过 LV-5HRE-bFGF-NSCs 病毒载体表达的 bFGF 可改善恢复、增加神经元存活并抑制脊髓损伤部位的自噬,这是由于损伤后第 42 天缺氧条件得到逆转。此外,在体内实现了 SCI 的功能恢复和神经元再生,伴随着抑制神经胶质瘢痕和轴突跨越瘢痕边界再生的证据。这是第一项表明在压缩性 SCI 损伤部位存在缺氧簇的研究,也是第一项表明将 LV-5HRE-bFGF-NSCs 移植到靶向该低氧微环境可增强大鼠 SCI 后神经功能恢复的研究;因此,LV-5HRE-bFGF-NSCs 可能是评估人类细胞 SCI 治疗的良好候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a632/7180297/5f77448fa03a/SCT3-9-603-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验