Suppr超能文献

深度特征迁移学习在私有云环境中用于可信和自动化的恶意软件特征生成。

Deep feature transfer learning for trusted and automated malware signature generation in private cloud environments.

机构信息

Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel; Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Israel.

Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel.

出版信息

Neural Netw. 2020 Apr;124:243-257. doi: 10.1016/j.neunet.2020.01.003. Epub 2020 Jan 27.

Abstract

This paper presents TrustSign, a novel, trusted automatic malware signature generation method based on high-level deep features transferred from a VGG-19 neural network model pretrained on the ImageNet dataset. While traditional automatic malware signature generation techniques rely on static or dynamic analysis of the malware's executable, our method overcomes the limitations associated with these techniques by producing signatures based on the presence of the malicious process in the volatile memory. By leveraging the cloud's virtualization technology, TrustSign analyzes the malicious process in a trusted manner, since the malware is unaware and cannot interfere with the inspection procedure. Additionally, by removing the dependency on the malware's executable, our method is fully capable of signing fileless malware as well. TrustSign's signature generation process does not require feature engineering or any additional model training, and it is done in a completely unsupervised manner, eliminating the need for a human expert. Because of this, our method has the advantage of dramatically reducing signature generation and distribution time. In fact, in this paper we rethink the typical use of deep convolutional neural networks and use the VGG-19 model as a topological feature extractor for a vastly different task from the one it was trained for. The results of our experimental evaluation demonstrate TrustSign's ability to generate signatures impervious to the process state over time. By using the signatures generated by TrustSign as input for various supervised classifiers, we achieved up to 99.5% classification accuracy.

摘要

本文提出了 TrustSign,一种新颖的、可信的自动恶意软件签名生成方法,该方法基于从在 ImageNet 数据集上预训练的 VGG-19 神经网络模型转移而来的高级深度特征。虽然传统的自动恶意软件签名生成技术依赖于对恶意软件可执行文件的静态或动态分析,但我们的方法通过基于恶意进程在易失性内存中的存在来生成签名,克服了这些技术的局限性。通过利用云的虚拟化技术,TrustSign 以可信的方式分析恶意进程,因为恶意软件无法察觉并且无法干扰检查过程。此外,通过去除对恶意软件可执行文件的依赖,我们的方法完全能够对无文件恶意软件进行签名。TrustSign 的签名生成过程不需要特征工程或任何额外的模型训练,并且完全是在无监督的方式下完成的,不需要人工专家的参与。因此,我们的方法具有显著减少签名生成和分发时间的优势。事实上,在本文中,我们重新思考了深度卷积神经网络的典型用法,并将 VGG-19 模型用作拓扑特征提取器,用于与训练任务截然不同的任务。我们的实验评估结果表明,TrustSign 能够生成对随时间变化的进程状态免疫的签名。通过将 TrustSign 生成的签名用作各种监督分类器的输入,我们实现了高达 99.5%的分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验