Rahimtula A D, Béréziat J C, Bussacchini-Griot V, Bartsch H
International Agency for Research on Cancer, Lyon, France.
Biochem Pharmacol. 1988 Dec 1;37(23):4469-77. doi: 10.1016/0006-2952(88)90662-4.
Addition of the mycotoxin ochratoxin A (OA), a nephrotoxic carcinogen, to rat liver microsomes greatly enhanced the rate of NADPH or ascorbate-dependent lipid peroxidation as measured by malondialdehyde formation. NADPH-dependent lipid peroxidation in kidney microsomes was similarly enhanced by OA. The process required the presence of trace amounts of iron but cytochrome P-450 and free active oxygen species appeared not to be involved. The efficiency of several ochratoxins (ochratoxins A, B, C, alpha and O-methyl-ochratoxin C) to enhance lipid peroxidation was related to the presence and reactivity of the phenolic hydroxyl group. Furthermore, the ability of these ochratoxins to enhance lipid peroxidation in microsomes correlated precisely with their known toxicities in chicks. Administration of ochratoxin A to rats also resulted in enhanced lipid peroxidation in vivo as evidenced by a seven-fold increase in the rate of ethane exhalation. These results suggest that lipid peroxidation may play a role in the observed toxicity of ochratoxin A in animals; a mechanism is proposed. (Formula: see text). Ochratoxin A: X = Cl; R1 = R2 = R3 = R4 = H Ochratoxin B: X = H; R1 = R2 = R3 = R4 = H Ochratoxin C: X = Cl; R1 = R2 = R3 = H; = R4 = CH3 O-Methyl-ochratoxin C: X = Cl; R2 = R3 = H; R1 = R4 = CH3 (4R)-4-hydroxyochratoxin A: X = Cl; R1 = R3 = R4 = H; R2 = OH (4S)-4-hydroxyochratoxin A: X = Cl; R1 = R2 = R4 = H; R3 = OH Fig. 1. Chemical structures of the various ochratoxins.