Suppr超能文献

基于超像素语义分类的乳腺超声图像分割。

Segmentation of breast ultrasound image with semantic classification of superpixels.

机构信息

School of Mechanical Engineering, and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, China; Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, China.

School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510006, China.

出版信息

Med Image Anal. 2020 Apr;61:101657. doi: 10.1016/j.media.2020.101657. Epub 2020 Jan 25.

Abstract

Breast cancer is a great threat to females. Ultrasound imaging has been applied extensively in diagnosis of breast cancer. Due to the poor image quality, segmentation of breast ultrasound (BUS) image remains a very challenging task. Besides, BUS image segmentation is a crucial step for further analysis. In this paper, we proposed a novel method to segment the breast tumor via semantic classification and merging patches. The proposed method firstly selects two diagonal points to crop a region of interest (ROI) on the original image. Then, histogram equalization, bilateral filter and pyramid mean shift filter are adopted to enhance the image. The cropped image is divided into many superpixels using simple linear iterative clustering (SLIC). Furthermore, some features are extracted from the superpixels and a bag-of-words model can be created. The initial classification can be obtained by a back propagation neural network (BPNN). To refine preliminary result, k-nearest neighbor (KNN) is used for reclassification and the final result is achieved. To verify the proposed method, we collected a BUS dataset containing 320 cases. The segmentation results of our method have been compared with the corresponding results obtained by five existing approaches. The experimental results show that our method achieved competitive results compared to conventional methods in terms of TP and FP, and produced good approximations to the hand-labelled tumor contours with comprehensive consideration of all metrics (the F1-score = 89.87% ± 4.05%, and the average radial error = 9.95% ± 4.42%).

摘要

乳腺癌对女性构成了巨大威胁。超声成像是诊断乳腺癌的常用方法。由于图像质量较差,乳腺超声(BUS)图像分割仍然是一项极具挑战性的任务。此外,BUS 图像分割是进一步分析的关键步骤。在本文中,我们提出了一种通过语义分类和合并补丁来分割乳腺肿瘤的新方法。该方法首先选择两个对角点,在原始图像上裁剪感兴趣区域(ROI)。然后,采用直方图均衡化、双边滤波和金字塔均值漂移滤波来增强图像。使用简单线性迭代聚类(SLIC)将裁剪后的图像划分为多个超像素。此外,从超像素中提取一些特征,并创建一个词袋模型。使用反向传播神经网络(BPNN)可以获得初始分类。为了细化初步结果,使用 K 最近邻(KNN)进行重新分类,并得到最终结果。为了验证所提出的方法,我们收集了一个包含 320 例的 BUS 数据集。将我们的方法的分割结果与五种现有方法的相应结果进行了比较。实验结果表明,与传统方法相比,我们的方法在 TP 和 FP 方面具有竞争力的结果,并且在综合考虑所有指标(F1 分数= 89.87%±4.05%,平均径向误差= 9.95%±4.42%)时,对人工标记的肿瘤轮廓进行了良好的近似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验