Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA; Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA.
Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA; Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA.
Curr Opin Biotechnol. 2020 Feb;61:198-208. doi: 10.1016/j.copbio.2019.12.027. Epub 2020 Feb 5.
The implementation of omics technologies such as genomics, proteomics and transcriptomics has revolutionized our understanding of microbiomes, and shed light on the functional attributes and mechanisms of action underlying the ability of probiotics to impact host health and starter cultures to drive food fermentation. Recently, molecular machines from CRISPR-Cas systems have redefined the gene editing toolbox and democritized our ability to alter the genome of food microorganisms. An integrated approach in which CRISPR-based genome editing is informed by omics studies is poised to enable the engineering of microorganisms and the formulation of microbiomes impacting the food supply chain. Here, we highlight the current applications of omics technologies in food microorganisms and CRISPR-based genome editing technologies in bacteria, and discuss how this integrated approach enables effective engineering of food microbes to generate enhanced probiotic strains, develop novel biotherapeutics and alter microbial communities in food matrices.
组学技术(如基因组学、蛋白质组学和转录组学)的实施彻底改变了我们对微生物组的理解,并揭示了益生菌影响宿主健康和发酵剂驱动食物发酵的功能属性和作用机制。最近,CRISPR-Cas 系统的分子机器重新定义了基因编辑工具包,并民主化了我们改变食物微生物基因组的能力。基于 CRISPR 的基因组编辑与组学研究相结合的方法有望实现对微生物的工程改造和对影响食品供应链的微生物组的配方。在这里,我们重点介绍了组学技术在食品微生物中的当前应用和基于 CRISPR 的基因组编辑技术在细菌中的应用,并讨论了这种综合方法如何使我们能够有效地对食品微生物进行工程改造,以生成增强的益生菌菌株、开发新型生物疗法和改变食品基质中的微生物群落。