Luo Michelle L, Leenay Ryan T, Beisel Chase L
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695-7905.
Biotechnol Bioeng. 2016 May;113(5):930-43. doi: 10.1002/bit.25851. Epub 2015 Oct 27.
CRISPR-Cas systems have rapidly transitioned from intriguing prokaryotic defense systems to powerful and versatile biomolecular tools. This article reviews how these systems have been translated into technologies to manipulate bacterial genetics, physiology, and communities. Recent applications in bacteria have centered on multiplexed genome editing, programmable gene regulation, and sequence-specific antimicrobials, while future applications can build on advances in eukaryotes, the rich natural diversity of CRISPR-Cas systems, and the untapped potential of CRISPR-based DNA acquisition. Overall, these systems have formed the basis of an ever-expanding genetic toolbox and hold tremendous potential for our future understanding and engineering of the bacterial world.
CRISPR-Cas系统已迅速从引人入胜的原核生物防御系统转变为强大且通用的生物分子工具。本文综述了这些系统如何被转化为用于操纵细菌遗传学、生理学和群落的技术。近期在细菌中的应用主要集中在多重基因组编辑、可编程基因调控和序列特异性抗菌方面,而未来的应用可以基于真核生物的进展、CRISPR-Cas系统丰富的自然多样性以及基于CRISPR的DNA获取的未开发潜力。总体而言,这些系统已构成一个不断扩展的遗传工具箱的基础,并在我们未来对细菌世界的理解和改造方面具有巨大潜力。