Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
Neurobiol Dis. 2020 May;138:104795. doi: 10.1016/j.nbd.2020.104795. Epub 2020 Feb 6.
Inheritance of apolipoprotein E4 (APOE4) is a major risk factor for development of Alzheimer's disease (AD). This lipoprotein, in contrast to apoE2, has arginine residues at positions 112 and 158 in place of cysteines in the latter isoform. In apoE3, the Cys at residue 158 is replaced by an arginine residue. This differential amino acid composition of the three genotypes of APOE have profound influence on the structure, binding properties, and multiple functions of this lipoprotein. Moreover, AD brain is under a high degree of oxidative stress, including that associated with amyloid β-peptide (Aβ) oligomers. Lipid peroxidation produces the highly reactive and neurotoxic molecule, 4-hydroxynonenal (HNE) that forms covalent bonds with cysteine residues (Cys) [as well as with Lys and His residues]. Covalently modified Cys significantly alter structure and function of modified proteins. HNE bound to Cys residue(s) on apoE2 and apoE3 lessens the chance of HNE damage other proteins. apoE4, lacking Cys residues, is unable to scavenge HNE, permitting this latter neurotoxic molecule to lead to oxidative modification of neuronal proteins and eventual cell death. We posit that this lack of HNE scavenging activity in apoE4 significantly contributes to the association of APOE4 inheritance and increased risk of developing AD. Apoe knock-out mice provide insights into the role of this lipoprotein in oxidative stress. Targeted replacement mice in which the mouse gene of Apoe is separately replaced by the human APOE2, APOE3, or APOE4 genes, while keeping the mouse promoter assures the correct location and amount of the human protein isoform. Human APOE targeted replacement mice have been used to investigate the notion that oxidative damage to and death of neurons in AD and its earlier stages is related to APOE genotype. This current paper reviews the intersection of human APOE genotype, oxidative stress, and diminished function of this lipoprotein as a major contributing risk factor for development of AD. Discussion of potential therapeutic strategies to mitigate against the elevated risk of developing AD with inheritance of the APOE4 allele also is presented.
载脂蛋白 E4(APOE4)的遗传是阿尔茨海默病(AD)发展的主要风险因素。与载脂蛋白 E2 不同,该脂蛋白的精氨酸残基取代了后者异构体中半胱氨酸的位置 112 和 158。在载脂蛋白 E3 中,残基 158 处的半胱氨酸被精氨酸取代。APOE 的三种基因型的这种差异氨基酸组成对该脂蛋白的结构、结合特性和多种功能有深远影响。此外,AD 大脑处于高度氧化应激状态,包括与淀粉样β肽(Aβ)寡聚物相关的应激。脂质过氧化产生高度反应性和神经毒性分子 4-羟基壬烯醛(HNE),它与半胱氨酸残基(Cys)[以及赖氨酸和组氨酸残基]形成共价键。共价修饰的 Cys 显著改变修饰蛋白的结构和功能。HNE 与载脂蛋白 E2 和载脂蛋白 E3 上的 Cys 残基结合,减少了 HNE 损伤其他蛋白质的机会。缺乏 Cys 残基的载脂蛋白 E4 无法清除 HNE,允许这种神经毒性分子导致神经元蛋白的氧化修饰和最终细胞死亡。我们假设,载脂蛋白 E4 缺乏 HNE 清除活性显著导致 APOE4 遗传与 AD 发病风险增加相关。载脂蛋白 E 敲除小鼠为该脂蛋白在氧化应激中的作用提供了见解。在这些小鼠中,将小鼠的 Apoe 基因分别用人类的 APOE2、APOE3 或 APOE4 基因替换,同时保留小鼠启动子,以确保人类蛋白异构体的正确位置和数量。人类载脂蛋白 E 靶向替换小鼠已被用于研究 AD 及其早期阶段神经元的氧化损伤和死亡与 APOE 基因型相关的观点。本文综述了人类 APOE 基因型、氧化应激和该脂蛋白功能降低作为 AD 发病的主要危险因素之间的交集。还讨论了减轻 APOE4 等位基因遗传引起的 AD 发病风险升高的潜在治疗策略。