Suppr超能文献

一种用于研究语音和嗓音产生中适应性的简单三参数模型。

A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production.

作者信息

Kearney Elaine, Nieto-Castañón Alfonso, Weerathunge Hasini R, Falsini Riccardo, Daliri Ayoub, Abur Defne, Ballard Kirrie J, Chang Soo-Eun, Chao Sara-Ching, Heller Murray Elizabeth S, Scott Terri L, Guenther Frank H

机构信息

Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States.

Department of Biomedical Engineering, Boston University, Boston, MA, United States.

出版信息

Front Psychol. 2020 Jan 21;10:2995. doi: 10.3389/fpsyg.2019.02995. eCollection 2019.

Abstract

Sensorimotor adaptation experiments are commonly used to examine motor learning behavior and to uncover information about the underlying control mechanisms of many motor behaviors, including speech production. In the speech and voice domains, aspects of the acoustic signal are shifted/perturbed over time via auditory feedback manipulations. In response, speakers alter their production in the opposite direction of the shift so that their perceived production is closer to what they intended. This process relies on a combination of feedback and feedforward control mechanisms that are difficult to disentangle. The current study describes and tests a simple 3-parameter mathematical model that quantifies the relative contribution of feedback and feedforward control mechanisms to sensorimotor adaptation. The model is a simplified version of the DIVA model, an adaptive neural network model of speech motor control. The three fitting parameters of are associated with the three key subsystems involved in speech motor control, namely auditory feedback control, somatosensory feedback control, and feedforward control. The model is tested through computer simulations that identify optimal model fits to six existing sensorimotor adaptation datasets. We show its utility in (1) interpreting the results of adaptation experiments involving the first and second formant frequencies as well as fundamental frequency; (2) assessing the effects of masking noise in adaptation paradigms; (3) fitting more than one perturbation dimension simultaneously; (4) examining sensorimotor adaptation at different timepoints in the production signal; and (5) quantitatively predicting responses in one experiment using parameters derived from another experiment. The model simulations produce excellent fits to real data across different types of perturbations and experimental paradigms (mean correlation between data and model fits across all six studies = 0.95 ± 0.02). The model parameters provide a mechanistic explanation for the behavioral responses to the adaptation paradigm that are not readily available from the behavioral responses alone. Overall, SimpleDIVA offers new insights into speech and voice motor control and has the potential to inform future directions of speech rehabilitation research in disordered populations. Simulation software, including an easy-to-use graphical user interface, is publicly available to facilitate the use of the model in future studies.

摘要

感觉运动适应实验通常用于检验运动学习行为,并揭示许多运动行为(包括言语产生)潜在控制机制的相关信息。在言语和语音领域,通过听觉反馈操纵,声学信号的各个方面会随时间发生偏移/扰动。作为回应,说话者会在偏移的相反方向上改变其发音,以使他们感知到的发音更接近其预期。这个过程依赖于反馈和前馈控制机制的结合,而这两种机制很难区分开来。当前的研究描述并测试了一个简单的三参数数学模型,该模型量化了反馈和前馈控制机制对感觉运动适应的相对贡献。该模型是DIVA模型的简化版本,DIVA模型是一种言语运动控制的自适应神经网络模型。这三个拟合参数与言语运动控制中涉及的三个关键子系统相关,即听觉反馈控制、体感反馈控制和前馈控制。该模型通过计算机模拟进行测试,这些模拟确定了与六个现有的感觉运动适应数据集的最佳模型拟合。我们展示了它在以下方面的效用:(1)解释涉及第一和第二共振峰频率以及基频的适应实验结果;(2)评估适应范式中掩蔽噪声的影响;(3)同时拟合多个扰动维度;(4)检查产生信号中不同时间点的感觉运动适应;以及(5)使用从另一个实验中得出的参数定量预测一个实验中的反应。模型模拟对不同类型的扰动和实验范式的真实数据产生了极好的拟合(所有六项研究中数据与模型拟合之间的平均相关性 = 0.95 ± 0.02)。模型参数为对适应范式的行为反应提供了一种机制性解释,而仅从行为反应本身是不容易获得这种解释的。总体而言,SimpleDIVA为言语和语音运动控制提供了新的见解,并有可能为未来针对无序人群的言语康复研究指明方向。包括易于使用的图形用户界面在内的模拟软件已公开提供,以方便该模型在未来研究中的使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验