Suppr超能文献

基于多尺度反向注意力稀疏卷积的管状结构分割

Tubular Structure Segmentation via Multi-Scale Reverse Attention Sparse Convolution.

作者信息

Zeng Xueqiang, Guo Yingwei, Zaman Asim, Hassan Haseeb, Lu Jiaxi, Xu Jiaxuan, Yang Huihui, Miao Xiaoqiang, Cao Anbo, Yang Yingjian, Chen Rongchang, Kang Yan

机构信息

School of Applied Technology, Shenzhen University, Shenzhen 518060, China.

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.

出版信息

Diagnostics (Basel). 2023 Jun 25;13(13):2161. doi: 10.3390/diagnostics13132161.

Abstract

Cerebrovascular and airway structures are tubular structures used for transporting blood and gases, respectively, providing essential support for the normal activities of the human body. Accurately segmenting these tubular structures is the basis of morphology research and pathological detection. Nevertheless, accurately segmenting these structures from images presents great challenges due to their complex morphological and topological characteristics. To address this challenge, this paper proposes a framework UARAI based on the U-Net multi-scale reverse attention network and sparse convolution network. The framework utilizes a multi-scale structure to effectively extract the global and deep detail features of vessels and airways. Further, it enhances the extraction ability of fine-edged features by a joint reverse attention module. In addition, the sparse convolution structure is introduced to improve the features' expression ability without increasing the model's complexity. Finally, the proposed training sample cropping strategy reduces the influence of block boundaries on the accuracy of tubular structure segmentation. The experimental findings demonstrate that the UARAI-based metrics, namely Dice and IoU, achieve impressive scores of 90.31% and 82.33% for cerebrovascular segmentation and 93.34% and 87.51% for airway segmentation, respectively. Compared to commonly employed segmentation techniques, the proposed method exhibits remarkable accuracy and robustness in delineating tubular structures such as cerebrovascular and airway structures. These results hold significant promise in facilitating medical image analysis and clinical diagnosis, offering invaluable support to healthcare professionals.

摘要

脑血管和气道结构是分别用于输送血液和气体的管状结构,为人体的正常活动提供重要支持。准确分割这些管状结构是形态学研究和病理检测的基础。然而,由于这些结构复杂的形态和拓扑特征,从图像中准确分割它们面临着巨大挑战。为应对这一挑战,本文提出了一种基于U-Net多尺度反向注意力网络和稀疏卷积网络的UARAI框架。该框架利用多尺度结构有效提取血管和气道的全局和深度细节特征。此外,通过联合反向注意力模块增强细边缘特征的提取能力。另外,引入稀疏卷积结构以在不增加模型复杂度的情况下提高特征表达能力。最后,所提出的训练样本裁剪策略减少了块边界对管状结构分割精度的影响。实验结果表明,基于UARAI的指标,即Dice和IoU,在脑血管分割中分别达到了令人印象深刻的90.31%和82.33%,在气道分割中分别达到了93.34%和87.51%。与常用的分割技术相比,该方法在描绘脑血管和气道结构等管状结构方面表现出显著的准确性和鲁棒性。这些结果在促进医学图像分析和临床诊断方面具有重要前景,为医疗保健专业人员提供了宝贵支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6b/10340561/9219e0ed1532/diagnostics-13-02161-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验