Suppr超能文献

使用不同的CT图像优化一种开源气道分割算法的参数。

Optimizing parameters of an open-source airway segmentation algorithm using different CT images.

作者信息

Nardelli Pietro, Khan Kashif A, Corvò Alberto, Moore Niamh, Murphy Mary J, Twomey Maria, O'Connor Owen J, Kennedy Marcus P, Estépar Raúl San José, Maher Michael M, Cantillon-Murphy Pádraig

机构信息

School of Engineering , University College Cork, College Road, Cork, Ireland.

Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland.

出版信息

Biomed Eng Online. 2015 Jun 26;14:62. doi: 10.1186/s12938-015-0060-2.

Abstract

BACKGROUND

Computed tomography (CT) helps physicians locate and diagnose pathological conditions. In some conditions, having an airway segmentation method which facilitates reconstruction of the airway from chest CT images can help hugely in the assessment of lung diseases. Many efforts have been made to develop airway segmentation algorithms, but methods are usually not optimized to be reliable across different CT scan parameters.

METHODS

In this paper, we present a simple and reliable semi-automatic algorithm which can segment tracheal and bronchial anatomy using the open-source 3D Slicer platform. The method is based on a region growing approach where trachea, right and left bronchi are cropped and segmented independently using three different thresholds. The algorithm and its parameters have been optimized to be efficient across different CT scan acquisition parameters. The performance of the proposed method has been evaluated on EXACT'09 cases and local clinical cases as well as on a breathing pig lung phantom using multiple scans and changing parameters. In particular, to investigate multiple scan parameters reconstruction kernel, radiation dose and slice thickness have been considered. Volume, branch count, branch length and leakage presence have been evaluated. A new method for leakage evaluation has been developed and correlation between segmentation metrics and CT acquisition parameters has been considered.

RESULTS

All the considered cases have been segmented successfully with good results in terms of leakage presence. Results on clinical data are comparable to other teams' methods, as obtained by evaluation against the EXACT09 challenge, whereas results obtained from the phantom prove the reliability of the method across multiple CT platforms and acquisition parameters. As expected, slice thickness is the parameter affecting the results the most, whereas reconstruction kernel and radiation dose seem not to particularly affect airway segmentation.

CONCLUSION

The system represents the first open-source airway segmentation platform. The quantitative evaluation approach presented represents the first repeatable system evaluation tool for like-for-like comparison between different airway segmentation platforms. Results suggest that the algorithm can be considered stable across multiple CT platforms and acquisition parameters and can be considered as a starting point for the development of a complete airway segmentation algorithm.

摘要

背景

计算机断层扫描(CT)有助于医生定位和诊断病理状况。在某些情况下,拥有一种有助于从胸部CT图像重建气道的气道分割方法,对肺部疾病的评估会有很大帮助。人们已经做出了许多努力来开发气道分割算法,但这些方法通常未针对不同的CT扫描参数进行优化,以确保可靠性。

方法

在本文中,我们提出了一种简单可靠的半自动算法,该算法可使用开源的3D Slicer平台分割气管和支气管解剖结构。该方法基于区域生长法,其中气管、右支气管和左支气管使用三个不同的阈值进行裁剪和独立分割。该算法及其参数已针对不同的CT扫描采集参数进行了优化,以提高效率。所提出方法的性能已在EXACT'09病例、本地临床病例以及使用多次扫描和变化参数的呼吸猪肺模型上进行了评估。特别是,为了研究多个扫描参数,考虑了重建内核、辐射剂量和切片厚度。评估了体积、分支数量、分支长度和是否存在泄漏情况。开发了一种新的泄漏评估方法,并考虑了分割指标与CT采集参数之间的相关性。

结果

所有考虑的病例均已成功分割,在是否存在泄漏方面取得了良好结果。临床数据的结果与其他团队的方法相当,这是通过针对EXACT09挑战进行评估得出的,而从模型获得的结果证明了该方法在多个CT平台和采集参数上的可靠性。正如预期的那样,切片厚度是对结果影响最大的参数,而重建内核和辐射剂量似乎对气道分割没有特别影响。

结论

该系统代表了首个开源气道分割平台。所提出的定量评估方法代表了首个可重复的系统评估工具,用于不同气道分割平台之间的同类比较。结果表明,该算法在多个CT平台和采集参数上可被视为稳定的,并且可被视为开发完整气道分割算法的起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f85e/4482101/879ead57f00b/12938_2015_60_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验