Suppr超能文献

浦肯野细胞的时间间隔学习模型。

A model for time interval learning in the Purkinje cell.

机构信息

Department of Neurosurgery, Henan Provincial People's Hospital of Zengzhou University, School of Clinical Medicine, Henan University, Zengzhou, Henan, China.

Computational Neuroscience Lab, Institute of Computer Science, University of Tartu, Tartu, Estonia.

出版信息

PLoS Comput Biol. 2020 Feb 10;16(2):e1007601. doi: 10.1371/journal.pcbi.1007601. eCollection 2020 Feb.

Abstract

Recent experimental findings indicate that Purkinje cells in the cerebellum represent time intervals by mechanisms other than conventional synaptic weights. These findings add to the theoretical and experimental observations suggesting the presence of intra-cellular mechanisms for adaptation and processing. To account for these experimental results we propose a new biophysical model for time interval learning in a Purkinje cell. The numerical model focuses on a classical delay conditioning task (e.g. eyeblink conditioning) and relies on a few computational steps. In particular, the model posits the activation by the parallel fiber input of a local intra-cellular calcium store which can be modulated by intra-cellular pathways. The reciprocal interaction of the calcium signal with several proteins forming negative and positive feedback loops ensures that the timing of inhibition in the Purkinje cell anticipates the interval between parallel and climbing fiber inputs during training. We systematically test the model ability to learn time intervals at the 150-1000 ms time scale, while observing that learning can also extend to the multiple seconds scale. In agreement with experimental observations we also show that the number of pairings required to learn increases with inter-stimulus interval. Finally, we discuss how this model would allow the cerebellum to detect and generate specific spatio-temporal patterns, a classical theory for cerebellar function.

摘要

最近的实验发现表明,小脑的浦肯野细胞通过不同于传统突触权重的机制来表示时间间隔。这些发现增加了理论和实验观察结果,表明存在用于适应和处理的细胞内机制。为了解释这些实验结果,我们提出了一种新的浦肯野细胞时间间隔学习的生物物理模型。该数值模型侧重于经典的延迟调节任务(例如眨眼调节),并依赖于几个计算步骤。具体来说,该模型假设平行纤维输入激活局部细胞内钙库,该钙库可通过细胞内途径进行调制。钙信号与形成负反馈和正反馈环的几种蛋白质的相互作用确保了在训练期间,浦肯野细胞中的抑制时间先于平行纤维和攀爬纤维输入之间的间隔。我们系统地测试了该模型在 150-1000ms 时间尺度上学习时间间隔的能力,同时观察到学习也可以扩展到多个秒的尺度。与实验观察结果一致,我们还表明,学习所需的配对次数随着刺激间隔的增加而增加。最后,我们讨论了该模型如何允许小脑检测和生成特定的时空模式,这是小脑功能的经典理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c41f/7034954/c93ace79c22b/pcbi.1007601.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验