Suppr超能文献

小脑浦肯野细胞模型中对时间输入序列的辨别与学习

Discrimination and learning of temporal input sequences in a cerebellar Purkinje cell model.

作者信息

Tamura Kaaya, Yamamoto Yuki, Kobayashi Taira, Kuriyama Rin, Yamazaki Tadashi

机构信息

Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.

Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.

出版信息

Front Cell Neurosci. 2023 Feb 2;17:1075005. doi: 10.3389/fncel.2023.1075005. eCollection 2023.

Abstract

INTRODUCTION

Temporal information processing is essential for sequential contraction of various muscles with the appropriate timing and amplitude for fast and smooth motor control. These functions depend on dynamics of neural circuits, which consist of simple neurons that accumulate incoming spikes and emit other spikes. However, recent studies indicate that individual neurons can perform complex information processing through the nonlinear dynamics of dendrites with complex shapes and ion channels. Although we have extensive evidence that cerebellar circuits play a vital role in motor control, studies investigating the computational ability of single Purkinje cells are few.

METHODS

We found, through computer simulations, that a Purkinje cell can discriminate a series of pulses in two directions (from dendrite tip to soma, and from soma to dendrite), as cortical pyramidal cells do. Such direction sensitivity was observed in whatever compartment types of dendrites (spiny, smooth, and main), although they have dierent sets of ion channels.

RESULTS

We found that the shortest and longest discriminable sequences lasted for 60 ms (6 pulses with 10 ms interval) and 4,000 ms (20 pulses with 200 ms interval), respectively. and that the ratio of discriminable sequences within the region of the interesting parameter space was, on average, 3.3% (spiny), 3.2% (smooth), and 1.0% (main). For the direction sensitivity, a T-type Ca channel was necessary, in contrast with cortical pyramidal cells that have -aspartate receptors (NMDARs). Furthermore, we tested whether the stimulus direction can be reversed by learning, specifically by simulated long-term depression, and obtained positive results.

DISCUSSION

Our results show that individual Purkinje cells can perform more complex information processing than is conventionally assumed for a single neuron, and suggest that Purkinje cells act as sequence discriminators, a useful role in motor control and learning.

摘要

引言

时间信息处理对于各种肌肉以适当的时间和幅度进行顺序收缩以实现快速平稳的运动控制至关重要。这些功能依赖于神经回路的动力学,神经回路由简单的神经元组成,这些神经元积累传入的尖峰并发出其他尖峰。然而,最近的研究表明,单个神经元可以通过具有复杂形状和离子通道的树突的非线性动力学来执行复杂的信息处理。尽管我们有大量证据表明小脑回路在运动控制中起着至关重要的作用,但研究单个浦肯野细胞计算能力的研究却很少。

方法

我们通过计算机模拟发现,浦肯野细胞可以像皮质锥体细胞一样,在两个方向(从树突尖端到胞体,以及从胞体到树突)区分一系列脉冲。无论树突的隔室类型(有棘的、平滑的和主要的)如何,都观察到了这种方向敏感性,尽管它们具有不同的离子通道组。

结果

我们发现最短和最长可区分序列分别持续60毫秒(间隔10毫秒的6个脉冲)和4000毫秒(间隔200毫秒的20个脉冲)。并且在感兴趣的参数空间区域内可区分序列的比例平均为3.3%(有棘的)、3.2%(平滑的)和1.0%(主要的)。对于方向敏感性,与具有天冬氨酸受体(NMDARs)的皮质锥体细胞相比,一个T型钙通道是必需的。此外,我们测试了刺激方向是否可以通过学习,特别是通过模拟长时程抑制来逆转,并得到了肯定的结果。

讨论

我们的结果表明,单个浦肯野细胞可以执行比传统上认为的单个神经元更复杂的信息处理,并表明浦肯野细胞充当序列鉴别器,在运动控制和学习中发挥有用的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e01/9932327/cf5d2b504914/fncel-17-1075005-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验