Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Rajvithi Road, Bangkok, 10400, Thailand.
Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK.
Trials. 2020 Feb 10;21(1):156. doi: 10.1186/s13063-020-4076-y.
BACKGROUND: Retrospective exploratory analyses of randomised controlled trials (RCTs) seeking to identify treatment effect heterogeneity (TEH) are prone to bias and false positives. Yet the desire to learn all we can from exhaustive data measurements on trial participants motivates the inclusion of such analyses within RCTs. Moreover, widespread advances in machine learning (ML) methods hold potential to utilise such data to identify subjects exhibiting heterogeneous treatment response. METHODS: We present a novel analysis strategy for detecting TEH in randomised data using ML methods, whilst ensuring proper control of the false positive discovery rate. Our approach uses random data partitioning with statistical or ML-based prediction on held-out data. This method can test for both crossover TEH (switch in optimal treatment) and non-crossover TEH (systematic variation in benefit across patients). The former is done via a two-sample hypothesis test measuring overall predictive performance. The latter is done via 'stacking' the ML predictors alongside a classical statistical model to formally test the added benefit of the ML algorithm. An adaptation of recent statistical theory allows for the construction of a valid aggregate p value. This testing strategy is independent of the choice of ML method. RESULTS: We demonstrate our approach with a re-analysis of the SEAQUAMAT trial, which compared quinine to artesunate for the treatment of severe malaria in Asian adults. We find no evidence for any subgroup who would benefit from a change in treatment from the current standard of care, artesunate, but strong evidence for significant TEH within the artesunate treatment group. In particular, we find that artesunate provides a differential benefit to patients with high numbers of circulating ring stage parasites. CONCLUSIONS: ML analysis plans using computational notebooks (documents linked to a programming language that capture the model parameter settings, data processing choices, and evaluation criteria) along with version control can improve the robustness and transparency of RCT exploratory analyses. A data-partitioning algorithm allows researchers to apply the latest ML techniques safe in the knowledge that any declared associations are statistically significant at a user-defined level.
背景:旨在识别治疗效果异质性(TEH)的随机对照试验(RCT)的回顾性探索性分析容易产生偏差和假阳性。然而,从试验参与者的详尽数据测量中尽可能多地学习的愿望促使在 RCT 中纳入此类分析。此外,机器学习(ML)方法的广泛进步有可能利用这些数据来识别表现出异质治疗反应的受试者。
方法:我们提出了一种使用 ML 方法检测随机数据中 TEH 的新分析策略,同时确保正确控制假阳性发现率。我们的方法使用随机数据分区,并在保留数据上进行基于统计或 ML 的预测。该方法可以同时测试交叉 TEH(最佳治疗方法的切换)和非交叉 TEH(患者之间的益处系统变化)。前者通过测量整体预测性能的两样本假设检验来完成。后者通过将 ML 预测器与经典统计模型并排“堆叠”来正式测试 ML 算法的附加益处来完成。最近统计理论的一个改编允许构建有效的聚合 p 值。这种测试策略与 ML 方法的选择无关。
结果:我们使用 SEAQUAMAT 试验的重新分析来证明我们的方法,该试验比较了奎宁和青蒿琥酯治疗亚洲成年人严重疟疾。我们没有发现任何证据表明任何亚组会从目前的标准治疗方法青蒿琥酯的治疗中受益,但在青蒿琥酯治疗组中确实有明显的 TEH 证据。特别是,我们发现青蒿琥酯对循环环阶段寄生虫数量较高的患者有不同的益处。
结论:使用包含计算笔记本(链接到编程语言的文档,该文档捕获模型参数设置、数据处理选择和评估标准)和版本控制的 ML 分析计划可以提高 RCT 探索性分析的稳健性和透明度。数据分区算法允许研究人员应用最新的 ML 技术,并且在知道任何声明的关联在用户定义的水平上具有统计学意义的情况下是安全的。
Cochrane Database Syst Rev. 2022-2-1
Cochrane Database Syst Rev. 2019-1-8
Cochrane Database Syst Rev. 2015-2-19
Cochrane Database Syst Rev. 2014-6-30
Prescrire Int. 2008-8
Cochrane Database Syst Rev. 2021-1-15
Cochrane Database Syst Rev. 2012-9-12
BMC Bioinformatics. 2022-3-31
J Health Econ Outcomes Res. 2020-5-12
Proc Natl Acad Sci U S A. 2016-7-5
Nat Rev Clin Oncol. 2015-9
N Engl J Med. 2014-7-31
Lancet. 2013-8-15
J Am Stat Assoc. 2012-9-1
Biometrika. 2010-6
Malar J. 2011-9-22