金纳米簇会引起神经胶质瘤细胞的体内平衡紊乱和溶酶体的适应性变化。
Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes.
机构信息
McGill University, Pharmacology & Therapeutics, Montreal, Canada.
Université Lyon, CNRS, Institut Lumière Matière, Lyon, France.
出版信息
Theranostics. 2020 Jan 1;10(4):1633-1648. doi: 10.7150/thno.37674. eCollection 2020.
Unique physicochemical features place gold nanoclusters at the forefront of nanotechnology for biological and biomedical applications. To date, information on the interactions of gold nanoclusters with biological macromolecules is limited and restricts their use in living cells. : Our multidisciplinary study begins to fill the current knowledge gap by focusing on lysosomes and associated biological pathways in U251N human glioblastoma cells. We concentrated on lysosomes, because they are the intracellular destination for many nanoparticles, regulate cellular homeostasis and control cell survival. : Quantitative data presented here show that gold nanoclusters (with 15 and 25 gold atoms), surface-modified with glutathione or PEG, did not diminish cell viability at concentrations ≤1 µM. However, even at sublethal concentrations, gold nanoclusters modulated the abundance, positioning, pH and enzymatic activities of lysosomes. Gold nanoclusters also affected other aspects of cellular homeostasis. Specifically, they stimulated the transient nuclear accumulation of TFEB and Nrf2, transcription factors that promote lysosome biogenesis and stress responses. Moreover, gold nanoclusters also altered the formation of protein aggregates in the cytoplasm. The cellular responses elicited by gold nanoclusters were largely reversible within a 24-hour period. : Taken together, this study explores the subcellular and molecular effects induced by gold nanoclusters and shows their effectiveness to regulate lysosome biology. Our results indicate that gold nanoclusters cause homeostatic perturbations without marked cell loss. Notably, cells adapt to the challenge inflicted by gold nanoclusters. These new insights provide a framework for the further development of gold nanocluster-based applications in biological sciences.
独特的物理化学特性使金纳米簇成为生物和生物医学应用纳米技术的前沿。迄今为止,关于金纳米簇与生物大分子相互作用的信息有限,限制了它们在活细胞中的应用。我们的多学科研究通过关注 U251N 人神经胶质瘤细胞中的溶酶体和相关生物途径,开始填补当前的知识空白。我们专注于溶酶体,因为它们是许多纳米颗粒的细胞内归宿,调节细胞内稳态并控制细胞存活。这里呈现的定量数据表明,表面用谷胱甘肽或 PEG 修饰的具有 15 和 25 个金原子的金纳米簇在浓度≤1µM 时不会降低细胞活力。然而,即使在亚致死浓度下,金纳米簇也调节了溶酶体的丰度、定位、pH 和酶活性。金纳米簇还影响细胞内稳态的其他方面。具体而言,它们刺激 TFEB 和 Nrf2 的瞬时核积累,TFEB 和 Nrf2 是促进溶酶体生物发生和应激反应的转录因子。此外,金纳米簇还改变了细胞质中蛋白质聚集体的形成。金纳米簇引起的细胞反应在 24 小时内大部分是可逆的。综上所述,本研究探讨了金纳米簇诱导的亚细胞和分子效应,并显示了它们调节溶酶体生物学的有效性。我们的结果表明,金纳米簇在没有明显细胞丢失的情况下引起了体内平衡的扰动。值得注意的是,细胞适应了金纳米簇带来的挑战。这些新的见解为进一步开发基于金纳米簇的生物科学应用提供了框架。
相似文献
Nanomedicine. 2019-8-9
Biochim Biophys Acta Mol Cell Res. 2018-6-30
Acc Chem Res. 2012-6-21
引用本文的文献
本文引用的文献
Nanomedicine. 2019-8-9
Eur J Pharm Biopharm. 2019-5-10
Cell Metab. 2019-4-2
Biochim Biophys Acta Mol Basis Dis. 2019-3-21
Chem Soc Rev. 2019-4-15
Cancer Res. 2019-2-13
Acc Chem Res. 2019-3-19
Free Radic Biol Med. 2019-1-14