Suppr超能文献

学习感知:用于精确图像分类的联合优化显微镜硬件

Learned sensing: jointly optimized microscope hardware for accurate image classification.

作者信息

Muthumbi Alex, Chaware Amey, Kim Kanghyun, Zhou Kevin C, Konda Pavan Chandra, Chen Richard, Judkewitz Benjamin, Erdmann Andreas, Kappes Barbara, Horstmeyer Roarke

机构信息

School of Advanced Optical Technologies, Friedrich-Alexander University, Erlangen 91052, Germany.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2019 Nov 19;10(12):6351-6369. doi: 10.1364/BOE.10.006351. eCollection 2019 Dec 1.

Abstract

Since its invention, the microscope has been optimized for interpretation by a human observer. With the recent development of deep learning algorithms for automated image analysis, there is now a clear need to re-design the microscope's hardware for specific interpretation tasks. To increase the speed and accuracy of automated image classification, this work presents a method to co-optimize how a sample is illuminated in a microscope, along with a pipeline to automatically classify the resulting image, using a deep neural network. By adding a "physical layer" to a deep classification network, we are able to jointly optimize for specific illumination patterns that highlight the most important sample features for the particular learning task at hand, which may not be obvious under standard illumination. We demonstrate how our learned sensing approach for illumination design can automatically identify malaria-infected cells with up to 5-10% greater accuracy than standard and alternative microscope lighting designs. We show that this joint hardware-software design procedure generalizes to offer accurate diagnoses for two different blood smear types, and experimentally show how our new procedure can translate across different experimental setups while maintaining high accuracy.

摘要

自发明以来,显微镜一直是为便于人类观察者解读而进行优化的。随着用于自动图像分析的深度学习算法的最新发展,现在显然需要针对特定的解读任务重新设计显微镜的硬件。为了提高自动图像分类的速度和准确性,这项工作提出了一种方法,用于共同优化显微镜中样本的照明方式,并提出了一个使用深度神经网络对所得图像进行自动分类的流程。通过在深度分类网络中添加一个“物理层”,我们能够针对特定的照明模式进行联合优化,这些模式能够突出手头特定学习任务中最重要的样本特征,而这些特征在标准照明下可能并不明显。我们展示了我们用于照明设计的学习感知方法如何能够比标准和其他显微镜照明设计以高达5%至10%的更高准确率自动识别感染疟疾的细胞。我们表明,这种联合硬件 - 软件设计程序具有通用性,能够为两种不同的血涂片类型提供准确诊断,并通过实验展示了我们的新程序如何能够在不同的实验设置中进行转换,同时保持高准确率。

相似文献

4
Self-calibrated 3D differential phase contrast microscopy with optimized illumination.具有优化照明的自校准三维微分相衬显微镜
Biomed Opt Express. 2022 Feb 24;13(3):1671-1684. doi: 10.1364/BOE.450838. eCollection 2022 Mar 1.
9
Lighting design for globally illuminated volume rendering.全局光照体绘制的照明设计。
IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2946-55. doi: 10.1109/TVCG.2013.172.

引用本文的文献

6
Phenomic Imaging.表型组成像
Phenomics. 2023 Nov 3;3(6):597-612. doi: 10.1007/s43657-023-00128-8. eCollection 2023 Dec.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验