Hsieh Meng-Hsuen, Lin Shih-Yi, Lin Cheng-Li, Hsieh Meng-Ju, Hsu Wu-Huei, Ju Shu-Woei, Lin Cheng-Chieh, Hsu Chung Y, Kao Chia-Hung
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA.
Graduate Institute of Biomedical Sciences, China Medical University, Taichung.
Ann Transl Med. 2019 Dec;7(23):732. doi: 10.21037/atm.2019.12.21.
A suitable multivariate predictor for predicting mortality following percutaneous coronary intervention (PCI) remains undetermined. We used a nationwide database to construct mortality prediction models to find the appropriate model.
Data were analyzed from the Taiwan National Health Insurance Research Database (NHIRD) covering the period from 2004 to 2013. The study cohort was composed of 3,421 patients with acute myocardial infarction (AMI) diagnosis undergoing PCI. The dataset of enrolled patients was used to construct multivariate prediction models. Of these, 3,079 and 342 patients were included in the training and test groups, respectively. Each patient had 22 input features and 2 output features that represented mortality. This study implemented an artificial neural network model (ANN), a decision tree (DT), a linear discriminant analysis classifier (LDA), a logistic regression model (LR), a naïve Bayes classifier (NB), and a support vector machine (SVM) to predict post-PCI patient mortality.
The DT model was found to be the most suitable in terms of performance and real-world applicability. The DT model achieved an area under receiving operating characteristic of 0.895 (95% confidence interval: 0.865-0.925), F1 of 0.969, precision of 0.971, and recall of 0.974.
The DT model constructed using data from the NHIRD exhibited effective 30-day mortality prediction for patients with AMI following PCI.
用于预测经皮冠状动脉介入治疗(PCI)后死亡率的合适多变量预测指标尚未确定。我们使用全国性数据库构建死亡率预测模型以找到合适的模型。
分析了台湾国民健康保险研究数据库(NHIRD)2004年至2013年期间的数据。研究队列由3421例接受PCI的急性心肌梗死(AMI)诊断患者组成。将纳入患者的数据集用于构建多变量预测模型。其中,3079例和342例患者分别纳入训练组和测试组。每位患者有22个输入特征和2个代表死亡率的输出特征。本研究实施了人工神经网络模型(ANN)、决策树(DT)、线性判别分析分类器(LDA)、逻辑回归模型(LR)、朴素贝叶斯分类器(NB)和支持向量机(SVM)来预测PCI术后患者死亡率。
就性能和实际适用性而言,DT模型被发现是最合适的。DT模型的受试者工作特征曲线下面积为0.895(95%置信区间:0.865 - 0.925),F1值为0.969,精确率为0.971,召回率为0.974。
使用NHIRD数据构建的DT模型对PCI术后AMI患者的30天死亡率预测有效。