Suppr超能文献

经皮导管介入术后短期死亡率的合适机器学习预测模型:一项基于全国人群的研究。

A fitting machine learning prediction model for short-term mortality following percutaneous catheterization intervention: a nationwide population-based study.

作者信息

Hsieh Meng-Hsuen, Lin Shih-Yi, Lin Cheng-Li, Hsieh Meng-Ju, Hsu Wu-Huei, Ju Shu-Woei, Lin Cheng-Chieh, Hsu Chung Y, Kao Chia-Hung

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA.

Graduate Institute of Biomedical Sciences, China Medical University, Taichung.

出版信息

Ann Transl Med. 2019 Dec;7(23):732. doi: 10.21037/atm.2019.12.21.

Abstract

BACKGROUND

A suitable multivariate predictor for predicting mortality following percutaneous coronary intervention (PCI) remains undetermined. We used a nationwide database to construct mortality prediction models to find the appropriate model.

METHODS

Data were analyzed from the Taiwan National Health Insurance Research Database (NHIRD) covering the period from 2004 to 2013. The study cohort was composed of 3,421 patients with acute myocardial infarction (AMI) diagnosis undergoing PCI. The dataset of enrolled patients was used to construct multivariate prediction models. Of these, 3,079 and 342 patients were included in the training and test groups, respectively. Each patient had 22 input features and 2 output features that represented mortality. This study implemented an artificial neural network model (ANN), a decision tree (DT), a linear discriminant analysis classifier (LDA), a logistic regression model (LR), a naïve Bayes classifier (NB), and a support vector machine (SVM) to predict post-PCI patient mortality.

RESULTS

The DT model was found to be the most suitable in terms of performance and real-world applicability. The DT model achieved an area under receiving operating characteristic of 0.895 (95% confidence interval: 0.865-0.925), F1 of 0.969, precision of 0.971, and recall of 0.974.

CONCLUSIONS

The DT model constructed using data from the NHIRD exhibited effective 30-day mortality prediction for patients with AMI following PCI.

摘要

背景

用于预测经皮冠状动脉介入治疗(PCI)后死亡率的合适多变量预测指标尚未确定。我们使用全国性数据库构建死亡率预测模型以找到合适的模型。

方法

分析了台湾国民健康保险研究数据库(NHIRD)2004年至2013年期间的数据。研究队列由3421例接受PCI的急性心肌梗死(AMI)诊断患者组成。将纳入患者的数据集用于构建多变量预测模型。其中,3079例和342例患者分别纳入训练组和测试组。每位患者有22个输入特征和2个代表死亡率的输出特征。本研究实施了人工神经网络模型(ANN)、决策树(DT)、线性判别分析分类器(LDA)、逻辑回归模型(LR)、朴素贝叶斯分类器(NB)和支持向量机(SVM)来预测PCI术后患者死亡率。

结果

就性能和实际适用性而言,DT模型被发现是最合适的。DT模型的受试者工作特征曲线下面积为0.895(95%置信区间:0.865 - 0.925),F1值为0.969,精确率为0.971,召回率为0.974。

结论

使用NHIRD数据构建的DT模型对PCI术后AMI患者的30天死亡率预测有效。

相似文献

3
Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models.
PLoS One. 2018 Nov 9;13(11):e0207192. doi: 10.1371/journal.pone.0207192. eCollection 2018.
6
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Jul;35(7):696-701. doi: 10.3760/cma.j.cn121430-20221219-01104.
7
Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review.
Comput Struct Biotechnol J. 2021;19:2833-2850. doi: 10.1016/j.csbj.2021.05.010. Epub 2021 May 7.
8
Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches.
JMIR Med Inform. 2020 Jun 4;8(6):e16678. doi: 10.2196/16678.

引用本文的文献

1
Predicting outcomes after hospitalisation for COPD exacerbation using machine learning.
ERJ Open Res. 2025 May 12;11(3). doi: 10.1183/23120541.00651-2024. eCollection 2025 May.
3
Dynamic Prognosis Prediction for Patients on DAPT After Drug-Eluting Stent Implantation: Model Development and Validation.
J Am Heart Assoc. 2024 Feb 6;13(3):e029900. doi: 10.1161/JAHA.123.029900. Epub 2024 Jan 31.
4
Predicting target lesion failure following percutaneous coronary intervention through machine learning risk assessment models.
Eur Heart J Digit Health. 2023 Aug 31;4(6):433-443. doi: 10.1093/ehjdh/ztad051. eCollection 2023 Dec.
7
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries.
Int J Environ Res Public Health. 2022 Dec 18;19(24):17002. doi: 10.3390/ijerph192417002.

本文引用的文献

2
'Ten commandments' for the 2018 ESC/EACTS Guidelines on Myocardial Revascularization.
Eur Heart J. 2019 Jan 7;40(2):79-80. doi: 10.1093/eurheartj/ehy855.
3
Improving palliative care with deep learning.
BMC Med Inform Decis Mak. 2018 Dec 12;18(Suppl 4):122. doi: 10.1186/s12911-018-0677-8.
4
Epidemiology of coronary heart disease and acute coronary syndrome.
Ann Transl Med. 2016 Jul;4(13):256. doi: 10.21037/atm.2016.06.33.
7
Prediction of Cardiac and Noncardiac Mortality After Percutaneous Coronary Intervention.
Circ Cardiovasc Interv. 2015 Sep;8(9):e002121. doi: 10.1161/CIRCINTERVENTIONS.114.002121.
8
A European benchmarking system to evaluate in-hospital mortality rates in acute coronary syndrome: the EURHOBOP project.
Int J Cardiol. 2015 Mar 1;182:509-16. doi: 10.1016/j.ijcard.2015.01.019. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验