Suppr超能文献

基于遗传性阿尔茨海默病信息的机器学习预测散发性阿尔茨海默病进展

Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning.

机构信息

Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.

Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität LMU, Munich, Germany.

出版信息

Alzheimers Dement. 2020 Mar;16(3):501-511. doi: 10.1002/alz.12032. Epub 2020 Feb 11.

Abstract

INTRODUCTION

Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge.

METHODS

We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer's disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated.

RESULTS

A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R = 24%) and memory (R = 25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%-75%.

DISCUSSION

Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.

摘要

简介

开发经过交叉验证的多生物标志物模型,以预测阿尔茨海默病(AD)认知下降的速度,是一项具有挑战性但尚未实现的临床需求。

方法

我们应用支持向量回归分析,对源自脑脊液、结构磁共振成像(MRI)、淀粉样蛋白-PET 和氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)的 AD 生物标志物进行分析,以预测认知下降的速度。预测模型在常染色体显性遗传 AD(ADAD,n = 121)中进行训练,并随后在散发性前驱 AD(n = 216)中进行交叉验证。我们估计了使用基于模型的风险富集检测治疗效果时所需的样本量。

结果

一个结合所有生物标志物模式并在 ADAD 中建立的模型,可预测散发性前驱 AD 的 4 年整体认知(R = 24%)和记忆(R = 25%)下降速度。基于模型的风险富集将检测模拟干预效果所需的样本量减少了 50%-75%。

讨论

我们独立验证的机器学习模型预测了散发性前驱 AD 的认知下降,可能会大大减少 AD 临床试验所需的样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f9f/7222030/795f2842300c/nihms-1565951-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验