Li Yong'ai, Jian Junming, Pickhardt Perry J, Ma Fenghua, Xia Wei, Li Haiming, Zhang Rui, Zhao Shuhui, Cai Songqi, Zhao Xingyu, Zhang Jiayi, Zhang Guofu, Jiang Jingxuan, Zhang Yan, Wang Keying, Lin Guangwu, Feng Feng, Lu Jing, Deng Lin, Wu Xiaodong, Qiang Jinwei, Gao Xin
Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China.
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
J Magn Reson Imaging. 2020 Sep;52(3):897-904. doi: 10.1002/jmri.27084. Epub 2020 Feb 11.
Preoperative differentiation of borderline from malignant epithelial ovarian tumors (BEOT from MEOT) can impact surgical management. MRI has improved this assessment but subjective interpretation by radiologists may lead to inconsistent results.
To develop and validate an objective MRI-based machine-learning (ML) assessment model for differentiating BEOT from MEOT, and compare the performance against radiologists' interpretation.
Retrospective study of eight clinical centers.
In all, 501 women with histopathologically-confirmed BEOT (n = 165) or MEOT (n = 336) from 2010 to 2018 were enrolled. Three cohorts were constructed: a training cohort (n = 250), an internal validation cohort (n = 92), and an external validation cohort (n = 159).
FIELD STRENGTH/SEQUENCE: Preoperative MRI within 2 weeks of surgery. Single- and multiparameter (MP) machine-learning assessment models were built utilizing the following four MRI sequences: T -weighted imaging (T WI), fat saturation (FS), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), and contrast-enhanced (CE)-T WI.
Diagnostic performance of the models was assessed for both whole tumor (WT) and solid tumor (ST) components. Assessment of the performance of the model in discriminating BEOT vs. early-stage MEOT was made. Six radiologists of varying experience also interpreted the MR images.
Mann-Whitney U-test: significance of the clinical characteristics; chi-square test: difference of label; DeLong test: difference of receiver operating characteristic (ROC).
The MP-ST model performed better than the MP-WT model for both the internal validation cohort (area under the curve [AUC] = 0.932 vs. 0.917) and external validation cohort (AUC = 0.902 vs. 0.767). The model showed capability in discriminating BEOT vs. early-stage MEOT, with AUCs of 0.909 and 0.920, respectively. Radiologist performance was considerably poorer than both the internal (mean AUC = 0.792; range, 0.679-0.924) and external (mean AUC = 0.797; range, 0.744-0.867) validation cohorts.
Performance of the MRI-based ML model was robust and superior to subjective assessment of radiologists. If our approach can be implemented in clinical practice, improved preoperative prediction could potentially lead to preserved ovarian function and fertility for some women.
Level 4.
Stage 2. J. Magn. Reson. Imaging 2020;52:897-904.
术前鉴别交界性上皮性卵巢肿瘤与恶性上皮性卵巢肿瘤(BEOT与MEOT)会影响手术管理。MRI改善了这一评估,但放射科医生的主观解读可能导致结果不一致。
开发并验证一种基于MRI的客观机器学习(ML)评估模型,用于鉴别BEOT与MEOT,并将其性能与放射科医生的解读进行比较。
对八个临床中心的回顾性研究。
共纳入了2010年至2018年间501例经组织病理学确诊为BEOT(n = 165)或MEOT(n = 336)的女性。构建了三个队列:一个训练队列(n = 250)、一个内部验证队列(n = 92)和一个外部验证队列(n = 159)。
场强/序列:手术前2周内的术前MRI。利用以下四个MRI序列构建单参数和多参数(MP)机器学习评估模型:T加权成像(T WI)、脂肪饱和(FS)、扩散加权成像(DWI)、表观扩散系数(ADC)以及对比增强(CE)-T WI。
针对整个肿瘤(WT)和实性肿瘤(ST)成分评估模型的诊断性能。评估模型在鉴别BEOT与早期MEOT方面的性能。六位经验不同的放射科医生也对MR图像进行了解读。
曼-惠特尼U检验:临床特征的显著性;卡方检验:标签差异;德龙检验:受试者操作特征(ROC)差异。
对于内部验证队列(曲线下面积[AUC] = 0.932对0.917)和外部验证队列(AUC = 0.902对0.767),MP-ST模型的表现均优于MP-WT模型。该模型显示出鉴别BEOT与早期MEOT的能力,AUC分别为0.909和0.920。放射科医生的表现明显逊于内部(平均AUC = 0.792;范围,0.679 - 0.924)和外部(平均AUC = 0.797;范围,0.744 - 0.867)验证队列。
基于MRI的ML模型性能稳健,优于放射科医生的主观评估。如果我们的方法能够在临床实践中得以应用,改善术前预测可能会为一些女性保留卵巢功能和生育能力。
4级。
2级。《磁共振成像杂志》2020年;52:897 - 904。