Suppr超能文献

扩散加权磁共振成像联合血清黏蛋白1、黏蛋白13和黏蛋白16在鉴别卵巢交界性上皮性肿瘤与恶性上皮性肿瘤中的诊断效能

Diagnostic efficacy of combining diffusion-weighted magnetic resonance imaging with serum Mucin 1, Mucin 13, and Mucin 16 in distinguishing borderline from malignant epithelial ovarian tumors.

作者信息

Wen Xiao-Ting, Qiu Hai-Feng, Ying Ling-Ling, Huang Min, Xiao Yun-Zhou, Fan Chen-Chen

机构信息

Department of Obstetrics, The People's Hospital of PingYang, Wenzhou, China.

Department of Radiology, Ningbo Yinzhou NO.2 Hospital, Ningbo, China.

出版信息

Asia Pac J Clin Oncol. 2025 Feb;21(1):115-122. doi: 10.1111/ajco.14045. Epub 2024 Jan 14.

Abstract

AIMS

To enhance ovarian tumor diagnosis beyond conventional methods, this study explored combining diffusion-weighted magnetic resonance imaging (DWI-MRI) and serum biomarkers (Mucin 1 [MUC1], MUC13, and MUC16) for distinguishing borderline from malignant epithelial ovarian tumors.

METHODS

A total of 126 patients, including 71 diagnosed with borderline (BEOTs) and 55 with malignant epithelial ovarian tumors (MEOTs), underwent preoperative DWI-MRI. Region of interest (ROI) was manually drawn along the solid component's boundary of the largest tumor, focusing on areas with potentially the lowest apparent diffusion coefficient (ADC). For entirely cystic tumors, a free-form ROI enclosed the maximum number of septa while targeting the lowest ADC. Serum biomarkers were determined using enzyme-linked immunosorbent assay.

RESULTS

Basic morphological traits proved inadequate for malignancy diagnosis, warranting this investigation. BEOTs had an ADC mean of (1.670 ± 0.250) × 10 mm/s, while MEOTs had a lower ADC mean of (1.332 ± 0.481) × 10 mm/s, with a sensitivity of 63.6% and specificity of 90.1%. Median MUC1 (167.0 U/mL vs. 87.3 U/mL), MUC13 (12.44 ng/mL vs. 7.77 ng/mL), and MUC16 (180.6 U/mL vs. 36.1 U/mL) levels were higher in MEOTs patients. The biomarker performance was: MUC1, sensitivity 50.9%, specificity 100%; MUC13, sensitivity 56.4%, specificity 78.9%; MUC16, sensitivity 83.64%, specificity 100%. Combining serum biomarkers and ADC mean resulted in a sensitivity of 96.4% and specificity of 100%.

CONCLUSION

The integration of DWI-MRI with serum biomarkers (MUC1, MUC13, and MUC16) achieves exceptional diagnostic accuracy, offering a powerful tool for the precise differentiation between borderline and malignant epithelial ovarian tumors.

摘要

目的

为了超越传统方法增强卵巢肿瘤诊断,本研究探索了将扩散加权磁共振成像(DWI-MRI)与血清生物标志物(粘蛋白1 [MUC1]、MUC13和MUC16)相结合,以区分交界性与恶性上皮性卵巢肿瘤。

方法

总共126例患者,包括71例诊断为交界性(BEOTs)和55例恶性上皮性卵巢肿瘤(MEOTs)患者,接受了术前DWI-MRI检查。沿着最大肿瘤的实性成分边界手动绘制感兴趣区域(ROI),重点关注表观扩散系数(ADC)可能最低的区域。对于完全囊性肿瘤,自由形式的ROI围绕最多数量的分隔,同时以最低ADC为目标。使用酶联免疫吸附测定法测定血清生物标志物。

结果

基本形态特征证明不足以进行恶性诊断,因此有必要进行本研究。BEOTs的ADC平均值为(1.670 ± 0.250)× 10⁻³ mm²/s,而MEOTs的ADC平均值较低,为(1.332 ± 0.481)× 10⁻³ mm²/s,敏感性为63.6%,特异性为90.1%。MEOTs患者的MUC1中位数(167.0 U/mL对87.3 U/mL)、MUC13(12.44 ng/mL对7.77 ng/mL)和MUC16(180.6 U/mL对36.1 U/mL)水平较高。生物标志物的表现为:MUC1,敏感性50.9%,特异性100%;MUC13,敏感性56.4%,特异性78.9%;MUC16,敏感性83.64%,特异性100%。将血清生物标志物与ADC平均值相结合,敏感性为96.4%,特异性为100%。

结论

DWI-MRI与血清生物标志物(MUC1、MUC13和MUC16)的整合实现了卓越的诊断准确性,为精确区分交界性和恶性上皮性卵巢肿瘤提供了一个强大的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验