Suppr超能文献

利用反演建模技术估算华盛顿特区-巴尔的摩都会区冬季一氧化碳、碳氢化合物和一氧化碳排放量。

Wintertime CO, CH, and CO Emissions Estimation for the Washington, DC-Baltimore Metropolitan Area Using an Inverse Modeling Technique.

作者信息

Lopez-Coto Israel, Ren Xinrong, Salmon Olivia E, Karion Anna, Shepson Paul B, Dickerson Russell R, Stein Ariel, Prasad Kuldeep, Whetstone James R

机构信息

National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.

University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States.

出版信息

Environ Sci Technol. 2020 Mar 3;54(5):2606-2614. doi: 10.1021/acs.est.9b06619. Epub 2020 Feb 21.

Abstract

Since greenhouse gas mitigation efforts are mostly being implemented in cities, the ability to quantify emission trends for urban environments is of paramount importance. However, previous aircraft work has indicated large daily variability in the results. Here we use measurements of CO, CH, and CO from aircraft over 5 days within an inverse model to estimate emissions from the DC-Baltimore region. Results show good agreement with previous estimates in the area for all three gases. However, aliasing caused by irregular spatiotemporal sampling of emissions is shown to significantly impact both the emissions estimates and their variability. Extensive sensitivity tests allow us to quantify the contributions of different sources of variability and indicate that daily variability in posterior emissions estimates is larger than the uncertainty attributed to the method itself (i.e., 17% for CO, 24% for CH, and 13% for CO). Analysis of hourly reported emissions from power plants and traffic counts shows that 97% of the daily variability in posterior emissions estimates is explained by accounting for the sampling in time and space of sources that have large hourly variability and, thus, caution must be taken in properly interpreting variability that is caused by irregular spatiotemporal sampling conditions.

摘要

由于温室气体减排工作大多在城市中开展,因此量化城市环境排放趋势的能力至关重要。然而,先前的飞机观测工作表明结果存在很大的日变化。在此,我们利用飞机在5天内对一氧化碳(CO)、甲烷(CH)和二氧化碳(CO₂)的测量数据,通过反演模型来估算华盛顿特区-巴尔的摩地区的排放量。结果显示,这三种气体在该地区的估算值与先前的估算结果吻合良好。然而,排放的不规则时空采样所导致的混叠现象被证明对排放估算及其变异性均有显著影响。广泛的敏感性测试使我们能够量化不同变异性来源的贡献,并表明后验排放估算中的日变化大于方法本身的不确定性(即一氧化碳为17%,甲烷为24%,二氧化碳为13%)。对发电厂每小时报告的排放量和交通流量的分析表明,后验排放估算中97%的日变化可通过考虑具有较大小时变化的源在时间和空间上的采样来解释,因此,在正确解释由不规则时空采样条件引起的变异性时必须谨慎。

相似文献

6
Aircraft-Based AirCore Sampling for Estimates of NO and CH Emissions.基于飞机的空气芯采样估算 NO 和 CH 排放。
Environ Sci Technol. 2023 Oct 17;57(41):15571-15579. doi: 10.1021/acs.est.3c04932. Epub 2023 Oct 5.

引用本文的文献

2
Underestimation of Thermogenic Methane Emissions in New York City.低估了纽约市的产热甲烷排放。
Environ Sci Technol. 2024 May 28;58(21):9147-9157. doi: 10.1021/acs.est.3c10307. Epub 2024 May 14.

本文引用的文献

4
Anthropogenic and biogenic CO fluxes in the Boston urban region.人为源和生物源 CO 在波士顿城区的通量。
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7491-7496. doi: 10.1073/pnas.1803715115. Epub 2018 Jul 2.
9
Gridded National Inventory of U.S. Methane Emissions.网格化美国甲烷排放清单
Environ Sci Technol. 2016 Dec 6;50(23):13123-13133. doi: 10.1021/acs.est.6b02878. Epub 2016 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验