Suppr超能文献

利用反演建模技术估算华盛顿特区-巴尔的摩都会区冬季一氧化碳、碳氢化合物和一氧化碳排放量。

Wintertime CO, CH, and CO Emissions Estimation for the Washington, DC-Baltimore Metropolitan Area Using an Inverse Modeling Technique.

作者信息

Lopez-Coto Israel, Ren Xinrong, Salmon Olivia E, Karion Anna, Shepson Paul B, Dickerson Russell R, Stein Ariel, Prasad Kuldeep, Whetstone James R

机构信息

National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.

University of Maryland, 4254 Stadium Drive, College Park, Maryland 20742, United States.

出版信息

Environ Sci Technol. 2020 Mar 3;54(5):2606-2614. doi: 10.1021/acs.est.9b06619. Epub 2020 Feb 21.

Abstract

Since greenhouse gas mitigation efforts are mostly being implemented in cities, the ability to quantify emission trends for urban environments is of paramount importance. However, previous aircraft work has indicated large daily variability in the results. Here we use measurements of CO, CH, and CO from aircraft over 5 days within an inverse model to estimate emissions from the DC-Baltimore region. Results show good agreement with previous estimates in the area for all three gases. However, aliasing caused by irregular spatiotemporal sampling of emissions is shown to significantly impact both the emissions estimates and their variability. Extensive sensitivity tests allow us to quantify the contributions of different sources of variability and indicate that daily variability in posterior emissions estimates is larger than the uncertainty attributed to the method itself (i.e., 17% for CO, 24% for CH, and 13% for CO). Analysis of hourly reported emissions from power plants and traffic counts shows that 97% of the daily variability in posterior emissions estimates is explained by accounting for the sampling in time and space of sources that have large hourly variability and, thus, caution must be taken in properly interpreting variability that is caused by irregular spatiotemporal sampling conditions.

摘要

由于温室气体减排工作大多在城市中开展,因此量化城市环境排放趋势的能力至关重要。然而,先前的飞机观测工作表明结果存在很大的日变化。在此,我们利用飞机在5天内对一氧化碳(CO)、甲烷(CH)和二氧化碳(CO₂)的测量数据,通过反演模型来估算华盛顿特区-巴尔的摩地区的排放量。结果显示,这三种气体在该地区的估算值与先前的估算结果吻合良好。然而,排放的不规则时空采样所导致的混叠现象被证明对排放估算及其变异性均有显著影响。广泛的敏感性测试使我们能够量化不同变异性来源的贡献,并表明后验排放估算中的日变化大于方法本身的不确定性(即一氧化碳为17%,甲烷为24%,二氧化碳为13%)。对发电厂每小时报告的排放量和交通流量的分析表明,后验排放估算中97%的日变化可通过考虑具有较大小时变化的源在时间和空间上的采样来解释,因此,在正确解释由不规则时空采样条件引起的变异性时必须谨慎。

相似文献

1
Wintertime CO, CH, and CO Emissions Estimation for the Washington, DC-Baltimore Metropolitan Area Using an Inverse Modeling Technique.
Environ Sci Technol. 2020 Mar 3;54(5):2606-2614. doi: 10.1021/acs.est.9b06619. Epub 2020 Feb 21.
2
Methane Emissions Show Recent Decline but Strong Seasonality in Two US Northeastern Cities.
Environ Sci Technol. 2023 Dec 5;57(48):19565-19574. doi: 10.1021/acs.est.3c05050. Epub 2023 Nov 9.
3
Seasonally Resolved Excess Urban Methane Emissions from the Baltimore/Washington, DC Metropolitan Region.
Environ Sci Technol. 2019 Oct 1;53(19):11285-11293. doi: 10.1021/acs.est.9b02782. Epub 2019 Sep 19.
5
Carbon Monoxide Emissions from the Washington, DC, and Baltimore Metropolitan Area: Recent Trend and COVID-19 Anomaly.
Environ Sci Technol. 2022 Feb 15;56(4):2172-2180. doi: 10.1021/acs.est.1c06288. Epub 2022 Jan 26.
6
Aircraft-Based AirCore Sampling for Estimates of NO and CH Emissions.
Environ Sci Technol. 2023 Oct 17;57(41):15571-15579. doi: 10.1021/acs.est.3c04932. Epub 2023 Oct 5.
7
Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.
Environ Sci Pollut Res Int. 2008 Jan;15(1):51-60. doi: 10.1065/espr2007.02.392.
9
Quantification of methane emitted by ruminants: a review of methods.
J Anim Sci. 2022 Jul 1;100(7). doi: 10.1093/jas/skac197.

引用本文的文献

1
Scaling Urban Methane Emissions: Utility of Single-Site Measurements in Five Urban Domains.
Environ Sci Technol. 2025 Jul 22;59(28):14399-14409. doi: 10.1021/acs.est.5c03844. Epub 2025 Jul 9.
2
Underestimation of Thermogenic Methane Emissions in New York City.
Environ Sci Technol. 2024 May 28;58(21):9147-9157. doi: 10.1021/acs.est.3c10307. Epub 2024 May 14.
3
Methane Emissions Show Recent Decline but Strong Seasonality in Two US Northeastern Cities.
Environ Sci Technol. 2023 Dec 5;57(48):19565-19574. doi: 10.1021/acs.est.3c05050. Epub 2023 Nov 9.
5
Accounting for Transport Error in Inversions: An Urban Synthetic Data Experiment.
Earth Space Sci. 2021 Jul;8(7):e2020EA001272. doi: 10.1029/2020EA001272. Epub 2021 Jul 9.
6
Greenhouse gas observations from the Northeast Corridor tower network.
Earth Syst Sci Data. 2020;12(1). doi: https://doi.org/10.5194/essd-12-699-2020.

本文引用的文献

1
High-resolution atmospheric inversion of urban CO emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX).
J Geophys Res Atmos. 2016 May 27;121(10):5213-5236. doi: 10.1002/2015JD024473. Epub 2016 Apr 7.
3
Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11712-11717. doi: 10.1073/pnas.1805687115. Epub 2018 Oct 29.
4
Anthropogenic and biogenic CO fluxes in the Boston urban region.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7491-7496. doi: 10.1073/pnas.1803715115. Epub 2018 Jul 2.
5
6
Airborne Methane Emission Measurements for Selected Oil and Gas Facilities Across California.
Environ Sci Technol. 2017 Nov 7;51(21):12981-12987. doi: 10.1021/acs.est.7b03254. Epub 2017 Oct 24.
7
Spatiotemporal Variability of Methane Emissions at Oil and Natural Gas Operations in the Eagle Ford Basin.
Environ Sci Technol. 2017 Jul 18;51(14):8001-8009. doi: 10.1021/acs.est.7b00814. Epub 2017 Jul 5.
8
Improved Mechanistic Understanding of Natural Gas Methane Emissions from Spatially Resolved Aircraft Measurements.
Environ Sci Technol. 2017 Jun 20;51(12):7286-7294. doi: 10.1021/acs.est.7b01810. Epub 2017 Jun 7.
9
Gridded National Inventory of U.S. Methane Emissions.
Environ Sci Technol. 2016 Dec 6;50(23):13123-13133. doi: 10.1021/acs.est.6b02878. Epub 2016 Nov 16.
10
Direct and Indirect Measurements and Modeling of Methane Emissions in Indianapolis, Indiana.
Environ Sci Technol. 2016 Aug 16;50(16):8910-7. doi: 10.1021/acs.est.6b01198. Epub 2016 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验