Suppr超能文献

乳腺癌模型:工程化肿瘤微环境。

Breast cancer models: Engineering the tumor microenvironment.

机构信息

Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States.

Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, United States.

出版信息

Acta Biomater. 2020 Apr 1;106:1-21. doi: 10.1016/j.actbio.2020.02.006. Epub 2020 Feb 9.

Abstract

The mechanisms behind cancer initiation and progression are not clear. Therefore, development of clinically relevant models to study cancer biology and drug response in tumors is essential. In vivo models are very valuable tools for studying cancer biology and for testing drugs; however, they often suffer from not accurately representing the clinical scenario because they lack either human cells or a functional immune system. On the other hand, two-dimensional (2D) in vitro models lack the three-dimensional (3D) network of cells and extracellular matrix (ECM) and thus do not represent the tumor microenvironment (TME). As an alternative approach, 3D models have started to gain more attention, as such models offer a platform with the ability to study cell-cell and cell-material interactions parametrically, and possibly include all the components present in the TME. Here, we first give an overview of the breast cancer TME, and then discuss the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models. We also highlight two engineering approaches that we think are promising in constructing models representative of human tumors: 3D printing and microfluidics. In addition to giving basic information about the TME in the breast tissue, this review article presents the state-of-the-art tissue engineered breast cancer models. STATEMENT OF SIGNIFICANCE: Involvement of biomaterials and tissue engineering fields in cancer research enables realistic mimicry of the cell-cell and cell-extracellular matrix (ECM) interactions in the tumor microenvironment (TME), and thus creation of better models that reflect the tumor response against drugs. Engineering the 3D in vitro models also requires a good understanding of the TME. Here, an overview of the breast cancer TME is given, and the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models is discussed. This review article is useful not only for biomaterials scientists aiming to engineer 3D in vitro TME models, but also for cancer researchers willing to use these models for studying cancer biology and drug testing.

摘要

癌症发生和发展的机制尚不清楚。因此,开发临床相关的模型来研究肿瘤中的癌症生物学和药物反应是至关重要的。体内模型是研究癌症生物学和测试药物的非常有价值的工具;然而,由于缺乏人类细胞或功能性免疫系统,它们往往不能准确地代表临床情况。另一方面,二维(2D)体外模型缺乏细胞和细胞外基质(ECM)的三维(3D)网络,因此不能代表肿瘤微环境(TME)。作为一种替代方法,3D 模型开始受到更多关注,因为这种模型提供了一个能够参数化研究细胞-细胞和细胞-材料相互作用的平台,并且可能包含 TME 中存在的所有成分。在这里,我们首先概述了乳腺癌 TME,然后讨论了目前临床前乳腺癌模型的状态,重点介绍了工程 3D 组织模型。我们还强调了两种我们认为在构建代表人类肿瘤的模型方面很有前途的工程方法:3D 打印和微流控。除了提供乳腺组织中 TME 的基本信息外,本文还介绍了最先进的组织工程乳腺癌模型。

意义

生物材料和组织工程领域在癌症研究中的参与使得能够真实模拟肿瘤微环境(TME)中的细胞-细胞和细胞-细胞外基质(ECM)相互作用,从而创建更好地反映肿瘤对药物反应的模型。工程 3D 体外模型还需要很好地了解 TME。在这里,我们概述了乳腺癌 TME,并讨论了目前临床前乳腺癌模型的状态,重点介绍了工程 3D 组织模型。本文不仅对旨在工程 3D 体外 TME 模型的生物材料科学家有用,而且对愿意使用这些模型研究癌症生物学和药物测试的癌症研究人员也有用。

相似文献

1
乳腺癌模型:工程化肿瘤微环境。
Acta Biomater. 2020 Apr 1;106:1-21. doi: 10.1016/j.actbio.2020.02.006. Epub 2020 Feb 9.
2
用于概括肿瘤微环境内复杂基质和免疫相互作用的工程化三维体外模型。
Biomaterials. 2024 Mar;305:122428. doi: 10.1016/j.biomaterials.2023.122428. Epub 2023 Dec 19.
3
基于天然水凝胶的三维乳腺癌肿瘤模型:综述。
J Zhejiang Univ Sci B. 2024 Sep 15;25(9):736-755. doi: 10.1631/jzus.B2300840.
5
一种基于海藻酸盐的整合 3D 体外模型,用于探索乳腺肿瘤微环境中的上皮-间质细胞动力学。
Carbohydr Polym. 2024 Oct 15;342:122363. doi: 10.1016/j.carbpol.2024.122363. Epub 2024 Jun 4.
6
高通量微流控 3D 仿生模型可定量描述人类乳腺肿瘤微环境。
Acta Biomater. 2021 Sep 15;132:473-488. doi: 10.1016/j.actbio.2021.06.025. Epub 2021 Jun 18.
7
3D 生物打印肿瘤模型:通过重现肿瘤微环境克服免疫治疗耐药性的快速便捷平台。
Cell Oncol (Dordr). 2024 Aug;47(4):1113-1126. doi: 10.1007/s13402-024-00935-9. Epub 2024 Mar 23.
8
3D 生物打印癌症的复杂模型。
Biomater Sci. 2023 May 16;11(10):3414-3430. doi: 10.1039/d2bm02060b.
9
肿瘤微环境的研究进展:3D 生物打印的应用和挑战。
Biochem Biophys Res Commun. 2024 Oct 20;730:150339. doi: 10.1016/j.bbrc.2024.150339. Epub 2024 Jul 8.
10
用于模拟肿瘤血管生成的3D体外微环境的水凝胶。
Adv Drug Deliv Rev. 2014 Dec 15;79-80:19-29. doi: 10.1016/j.addr.2014.06.002. Epub 2014 Jun 23.

引用本文的文献

1
JMJD8在乳腺癌中的过表达:对诊断、预后及免疫微环境相互作用的影响
Front Oncol. 2025 Jul 21;15:1536278. doi: 10.3389/fonc.2025.1536278. eCollection 2025.
2
单细胞测序与机器学习识别出一种与CD79A+B细胞相关的转录特征,用于预测乳腺癌的临床结局和免疫微环境。
Cancer Inform. 2025 Jul 26;24:11769351251360675. doi: 10.1177/11769351251360675. eCollection 2025.
4
乳腺肿瘤微环境中的肿瘤相关巨噬细胞
Int J Mol Sci. 2025 Jun 21;26(13):5973. doi: 10.3390/ijms26135973.
5
透明的三层细菌纳米纤维素作为用于细胞共培养的多隔室和仿生支架
J Funct Biomater. 2025 Jun 3;16(6):208. doi: 10.3390/jfb16060208.
7
用于研究硬度依赖性肿瘤行为和药物反应的非小细胞肺癌的细胞外基质表征及3D生物打印模型
Mater Today Bio. 2025 Apr 30;32:101823. doi: 10.1016/j.mtbio.2025.101823. eCollection 2025 Jun.
8
体外血管化芯片器官模型结构的进展
Cyborg Bionic Syst. 2024 Apr 25;5:0107. doi: 10.34133/cbsystems.0107. eCollection 2024.
9
用于构建肿瘤模型的3D生物打印技术的叙述性综述:现状与展望
Transl Cancer Res. 2025 Feb 28;14(2):1479-1491. doi: 10.21037/tcr-2025-128. Epub 2025 Feb 26.
10
工程化年龄模拟乳腺癌模型揭示了年轻和老年微环境中不同的药物反应。
Adv Healthc Mater. 2025 Mar;14(7):e2404461. doi: 10.1002/adhm.202404461. Epub 2025 Jan 16.

本文引用的文献

1
用于耐药性研究的乳腺癌模型的3D生物打印
ACS Biomater Sci Eng. 2018 Dec 10;4(12):4401-4411. doi: 10.1021/acsbiomaterials.8b01277. Epub 2018 Nov 29.
2
细胞外基质硬化诱导乳腺上皮细胞发生恶性表型转变。
Cell Mol Bioeng. 2016 Oct 19;10(1):114-123. doi: 10.1007/s12195-016-0468-1. eCollection 2017 Feb.
3
具有特定生化组成和结构组织的解剖半月板构建体。
Biomaterials. 2019 Oct;218:119361. doi: 10.1016/j.biomaterials.2019.119361. Epub 2019 Jul 15.
4
细胞外基质的排列决定了粘着斑的组织,并引导单轴细胞迁移。
APL Bioeng. 2018 Dec 26;2(4):046107. doi: 10.1063/1.5052239. eCollection 2018 Dec.
5
一种用于定量检测乳腺癌标本转移倾向的微流控分析方法。
Nat Biomed Eng. 2019 Jun;3(6):452-465. doi: 10.1038/s41551-019-0400-9. Epub 2019 May 6.
6
双重降解和可注射透明质酸水凝胶模拟细胞外基质用于乳腺癌 MCF-7 细胞的 3D 培养。
Carbohydr Polym. 2019 May 1;211:336-348. doi: 10.1016/j.carbpol.2019.01.115. Epub 2019 Feb 5.
7
上皮-间质转化(EMT)的基础:从结构、动力学和功能角度的研究
J Cell Physiol. 2019 Sep;234(9):14535-14555. doi: 10.1002/jcp.28160. Epub 2019 Feb 5.
8
基于 CRISPR/Cas9 编辑的诱导多能干细胞的血管组织模型用于模拟衰老和疾病相关的损伤。
Tissue Eng Part A. 2019 May;25(9-10):759-772. doi: 10.1089/ten.TEA.2018.0271. Epub 2019 Apr 30.
9
3D 乳腺上皮细胞球体制备用于人类癌症模型的生物打印。
Biofabrication. 2019 Jan 24;11(2):025003. doi: 10.1088/1758-5090/aafc49.
10
免疫检查点阻断及其与小分子抑制剂联合治疗癌症。
Biochim Biophys Acta Rev Cancer. 2019 Apr;1871(2):199-224. doi: 10.1016/j.bbcan.2018.12.002. Epub 2018 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验