Sunseri Jocelyn, Koes David R
Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States.
J Chem Inf Model. 2020 Mar 23;60(3):1079-1084. doi: 10.1021/acs.jcim.9b01145. Epub 2020 Feb 26.
We describe libmolgrid, a general-purpose library for representing three-dimensional molecules using multidimensional arrays of voxelized molecular data. libmolgrid provides functionality for sampling batches of data suited to machine learning workflows, and it also supports temporal and spatial recurrences over that data to facilitate work with convolutional and recurrent neural networks. It was designed for seamless integration with popular deep learning frameworks and features optimized performance by leveraging graphics processing units (GPUs). libmolgrid is a free and open source project (GPLv2) that aims to democratize grid-based modeling in computational chemistry.
我们介绍了libmolgrid,这是一个通用库,用于使用体素化分子数据的多维数组来表示三维分子。libmolgrid提供了对适合机器学习工作流程的批量数据进行采样的功能,并且还支持对该数据进行时间和空间递归,以方便使用卷积神经网络和递归神经网络。它旨在与流行的深度学习框架无缝集成,并通过利用图形处理单元(GPU)实现性能优化。libmolgrid是一个免费的开源项目(GPLv2),旨在使计算化学中基于网格的建模民主化。