Suppr超能文献

Libmolgrid:用于深度学习应用的图形处理单元加速分子网格化

libmolgrid: Graphics Processing Unit Accelerated Molecular Gridding for Deep Learning Applications.

作者信息

Sunseri Jocelyn, Koes David R

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1079-1084. doi: 10.1021/acs.jcim.9b01145. Epub 2020 Feb 26.

Abstract

We describe libmolgrid, a general-purpose library for representing three-dimensional molecules using multidimensional arrays of voxelized molecular data. libmolgrid provides functionality for sampling batches of data suited to machine learning workflows, and it also supports temporal and spatial recurrences over that data to facilitate work with convolutional and recurrent neural networks. It was designed for seamless integration with popular deep learning frameworks and features optimized performance by leveraging graphics processing units (GPUs). libmolgrid is a free and open source project (GPLv2) that aims to democratize grid-based modeling in computational chemistry.

摘要

我们介绍了libmolgrid,这是一个通用库,用于使用体素化分子数据的多维数组来表示三维分子。libmolgrid提供了对适合机器学习工作流程的批量数据进行采样的功能,并且还支持对该数据进行时间和空间递归,以方便使用卷积神经网络和递归神经网络。它旨在与流行的深度学习框架无缝集成,并通过利用图形处理单元(GPU)实现性能优化。libmolgrid是一个免费的开源项目(GPLv2),旨在使计算化学中基于网格的建模民主化。

相似文献

4
Advancing Biosensors with Machine Learning.借助机器学习推动生物传感器发展。
ACS Sens. 2020 Nov 25;5(11):3346-3364. doi: 10.1021/acssensors.0c01424. Epub 2020 Nov 13.
6
Deep Learning for Time Series Forecasting: A Survey.深度学习在时间序列预测中的应用:综述。
Big Data. 2021 Feb;9(1):3-21. doi: 10.1089/big.2020.0159. Epub 2020 Dec 3.
7
Deep Learning in Chemistry.深度学习在化学中的应用。
J Chem Inf Model. 2019 Jun 24;59(6):2545-2559. doi: 10.1021/acs.jcim.9b00266. Epub 2019 Jun 13.
10
Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.医学成像中的机器学习与深度学习:智能成像
J Med Imaging Radiat Sci. 2019 Dec;50(4):477-487. doi: 10.1016/j.jmir.2019.09.005. Epub 2019 Oct 7.

引用本文的文献

6
CACHE Challenge #1: Docking with GNINA Is All You Need.CACHE挑战#1:使用GNINA进行对接就足够了。
J Chem Inf Model. 2024 Dec 23;64(24):9388-9396. doi: 10.1021/acs.jcim.4c01429. Epub 2024 Dec 9.

本文引用的文献

1
DeltaDelta neural networks for lead optimization of small molecule potency.用于小分子效力先导优化的DeltaDelta神经网络。
Chem Sci. 2019 Oct 16;10(47):10911-10918. doi: 10.1039/c9sc04606b. eCollection 2019 Dec 21.
3
Optimization of Molecules via Deep Reinforcement Learning.通过深度强化学习优化分子。
Sci Rep. 2019 Jul 24;9(1):10752. doi: 10.1038/s41598-019-47148-x.
5
PotentialNet for Molecular Property Prediction.用于分子性质预测的PotentialNet
ACS Cent Sci. 2018 Nov 28;4(11):1520-1530. doi: 10.1021/acscentsci.8b00507. Epub 2018 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验