Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
Nat Protoc. 2020 Mar;15(3):1255-1284. doi: 10.1038/s41596-019-0287-7. Epub 2020 Feb 12.
Genome replication follows a defined temporal programme that can change during cellular differentiation and disease onset. DNA replication results in an increase in DNA copy number that can be measured by high-throughput sequencing. Here we present a protocol to determine genome replication dynamics using DNA copy-number measurements. Cell populations can be obtained in three variants of the method. First, sort-seq reveals the average replication dynamics across S phase in an unperturbed cell population; FACS is used to isolate replicating and non-replicating subpopulations from asynchronous cells. Second, sync-seq measures absolute replication time at specific points during S phase using a synchronized cell population. Third, marker frequency analysis can be used to reveal the average replication dynamics using copy-number analysis in any proliferating asynchronous cell culture. These approaches have been used to reveal genome replication dynamics in prokaryotes, archaea and a wide range of eukaryotes, including yeasts and mammalian cells. We have found this approach straightforward to apply to other organisms and highlight example studies from across the three domains of life. Here we present a Saccharomyces cerevisiae version of the protocol that can be performed in 7-10 d. It requires basic molecular and cellular biology skills, as well as a basic understanding of Unix and R.
基因组复制遵循一个明确的时间程序,这个程序可以在细胞分化和疾病发生过程中发生变化。DNA 复制会导致 DNA 拷贝数增加,这可以通过高通量测序来测量。在这里,我们提出了一种使用 DNA 拷贝数测量来确定基因组复制动力学的方案。可以通过该方法的三种变体获得细胞群体。首先,sort-seq 在未受干扰的细胞群体中揭示了 S 期内的平均复制动力学;使用 FACS 从异步细胞中分离复制和非复制亚群。其次,sync-seq 使用同步化细胞群体在 S 期的特定时间点测量绝对复制时间。第三,使用任何增殖的异步细胞培养物中的拷贝数分析进行标记频率分析可以揭示平均复制动力学。这些方法已被用于揭示原核生物、古菌和广泛的真核生物(包括酵母和哺乳动物细胞)中的基因组复制动力学。我们发现这种方法很容易应用于其他生物体,并强调了来自生命三个领域的示例研究。在这里,我们提出了一种酿酒酵母的方案版本,该方案可以在 7-10 天内完成。它需要基本的分子和细胞生物学技能,以及对 Unix 和 R 的基本理解。