文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A deep learning model to predict dose distributions for breast cancer radiotherapy.

作者信息

Hou Xiaorong, Cheng Weishi, Shen Jing, Guan Hui, Zhang Yimeng, Bai Lu, Wang Shaobin, Liu Zhikai

机构信息

Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.

出版信息

Discov Oncol. 2025 Feb 12;16(1):165. doi: 10.1007/s12672-025-01942-4.


DOI:10.1007/s12672-025-01942-4
PMID:39937302
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11822156/
Abstract

PURPOSE: In this work, we propose to develop a 3D U-Net-based deep learning model that accurately predicts the dose distribution for breast cancer radiotherapy. METHODS: This study included 176 breast cancer patients, divided into training, validating and testing sets. A deep learning model based on the 3D U-Net architecture was developed to predict dose distribution, which employed a double encoder combination attention (DECA) module, a cross stage partial + Resnet + Attention (CRA) module, a difficulty perception and a critical regions loss. The performance and generalization ability of this model were evaluated by the voxel mean absolute error (MAE), several clinically relevant dosimetric indexes and 3D gamma passing rates. RESULTS: Our model accurately predicted the 3D dose distributions with each dosage level mirroring the clinical reality in shape. The generated dose-volume histogram (DVH) matched with the ground truth curve. The total dose error of our model was below 1.16 Gy, complying with clinical usage standards. When compared to other exceptional models, our model optimally predicted eight out of nine regions, and the prediction errors for the first planning target volume (PTV1) and PTV2 were merely 1.03 Gy and 0.74 Gy. Moreover, the mean 3%/3 mm 3D gamma passing rates for PTV1, PTV2, Heart and Lung L achieved 91.8%, 96.4%, 91.5%, and 93.2%, respectively, surpassing the other models and meeting clinical standards. CONCLUSIONS: This study developed a new deep learning model based on 3D U-Net that can accurately predict dose distributions for breast cancer radiotherapy, which can improve the quality and planning efficiency.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/dded28960864/12672_2025_1942_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/5a3e8fe2f38d/12672_2025_1942_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/0c714417cf65/12672_2025_1942_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/08460514a5e0/12672_2025_1942_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/8cb49da238b0/12672_2025_1942_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/dded28960864/12672_2025_1942_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/5a3e8fe2f38d/12672_2025_1942_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/0c714417cf65/12672_2025_1942_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/08460514a5e0/12672_2025_1942_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/8cb49da238b0/12672_2025_1942_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e09/11822156/dded28960864/12672_2025_1942_Fig5_HTML.jpg

相似文献

[1]
A deep learning model to predict dose distributions for breast cancer radiotherapy.

Discov Oncol. 2025-2-12

[2]
Attention 3D U-NET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Direction modulated brachytherapy tandem applicator.

Med Phys. 2024-8

[3]
Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.

J Appl Clin Med Phys. 2022-7

[4]
A method of using deep learning to predict three-dimensional dose distributions for intensity-modulated radiotherapy of rectal cancer.

J Appl Clin Med Phys. 2020-5

[5]
A Comparative Study of Deep Learning Dose Prediction Models for Cervical Cancer Volumetric Modulated Arc Therapy.

Technol Cancer Res Treat. 2024

[6]
Deep learning-based prediction of the dose-volume histograms for volumetric modulated arc therapy of left-sided breast cancer.

Med Phys. 2024-11

[7]
A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck.

J Appl Clin Med Phys. 2023-9

[8]
A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy.

Med Phys. 2019-3-30

[9]
Improving 3D dose prediction for breast radiotherapy using novel glowing masks and gradient-weighted loss functions.

Med Phys. 2024-10

[10]
Using deep learning to predict beam-tunable Pareto optimal dose distribution for intensity-modulated radiation therapy.

Med Phys. 2020-9

本文引用的文献

[1]
Deep-learning Method for the Prediction of Three-Dimensional Dose Distribution for Left Breast Cancer Conformal Radiation Therapy.

Clin Oncol (R Coll Radiol). 2023-12

[2]
Voluntary versus mechanically-induced deep inspiration breath-hold for left breast cancer: A randomized controlled trial.

Radiother Oncol. 2023-6

[3]
Stability and reproducibility comparisons between deep inspiration breath-hold techniques for left-sided breast cancer patients: A prospective study.

J Appl Clin Med Phys. 2023-5

[4]
Deep inspiration breath-hold radiation therapy in left-sided breast cancer patients: a single-institution retrospective dosimetric analysis of organs at risk doses.

Strahlenther Onkol. 2023-4

[5]
Domain knowledge driven 3D dose prediction using moment-based loss function.

Phys Med Biol. 2022-9-14

[6]
Combining dense elements with attention mechanisms for 3D radiotherapy dose prediction on head and neck cancers.

J Appl Clin Med Phys. 2022-8

[7]
Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer.

J Appl Clin Med Phys. 2022-7

[8]
Clinical evaluation of two AI models for automated breast cancer plan generation.

Radiat Oncol. 2022-2-5

[9]
Omicron (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance.

ArXiv. 2021-12-1

[10]
Assessment of log-based fingerprinting system of Mobius3D with Elekta linear accelerators.

J Appl Clin Med Phys. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索