Suppr超能文献

使用深度学习和物联网预测新冠肺炎患者感染情况的软件系统

Software system to predict the infection in COVID-19 patients using deep learning and web of things.

作者信息

Singh Ashima, Kaur Amrita, Dhillon Arwinder, Ahuja Sahil, Vohra Harpreet

机构信息

CSED Thapar Institute of Engineering and Technology Patiala India.

ECED Thapar Institute of Engineering and Technology Patiala India.

出版信息

Softw Pract Exp. 2022 Apr;52(4):868-886. doi: 10.1002/spe.3011. Epub 2021 Jun 24.

Abstract

Since the end of 2019, computed tomography (CT) images have been used as an important substitute for the time-consuming Reverse Transcriptase polymerase chain reaction (RT-PCR) test; a new coronavirus 2019 (COVID-19) disease has been detected and has quickly spread through many countries across the world. Medical imaging such as computed tomography provides great potential due to growing skepticism toward the sensitivity of RT-PCR as a screening tool. For this purpose, automated image segmentation is highly desired for a clinical decision aid and disease monitoring. However, there is limited publicly accessible COVID-19 image knowledge, leading to the overfitting of conventional approaches. To address this issue, the present paper focuses on data augmentation techniques to create synthetic data. Further, a framework has been proposed using WoT and traditional U-Net with EfficientNet B0 to segment the COVID Radiopedia and Medseg datasets automatically. The framework achieves an -score of 0.96, which is best among state-of-the-art methods. The performance of the proposed framework also computed using Sensitivity, Specificity, and Dice-coefficient, achieves 84.5%, 93.9%, and 65.0%, respectively. Finally, the proposed work is validated using three quality of service (QoS) parameters such as server latency, response time, and network latency which improves the performance by 8%, 7%, and 10%, respectively.

摘要

自2019年底以来,计算机断层扫描(CT)图像已被用作耗时的逆转录聚合酶链反应(RT-PCR)检测的重要替代方法;一种新型冠状病毒2019(COVID-19)疾病已被检测到,并迅速在世界许多国家传播。由于对RT-PCR作为筛查工具的敏感性越来越怀疑,计算机断层扫描等医学成像具有巨大潜力。为此,临床决策辅助和疾病监测非常需要自动图像分割。然而,公开可用的COVID-19图像知识有限,导致传统方法出现过拟合。为了解决这个问题,本文重点研究数据增强技术以创建合成数据。此外,还提出了一个框架,使用WoT和带有EfficientNet B0的传统U-Net自动分割COVID Radiopedia和Medseg数据集。该框架的Jaccard指数达到0.96,在现有方法中是最好的。所提出框架的性能还通过敏感性、特异性和骰子系数进行计算,分别达到84.5%、93.9%和65.0%。最后,使用服务器延迟、响应时间和网络延迟这三个服务质量(QoS)参数对所提出的工作进行验证,性能分别提高了8%、7%和10%。

相似文献

1
Software system to predict the infection in COVID-19 patients using deep learning and web of things.
Softw Pract Exp. 2022 Apr;52(4):868-886. doi: 10.1002/spe.3011. Epub 2021 Jun 24.
2
Robust chest CT image segmentation of COVID-19 lung infection based on limited data.
Inform Med Unlocked. 2021;25:100681. doi: 10.1016/j.imu.2021.100681. Epub 2021 Jul 27.
5
Fractal, recurrent, and dense U-Net architectures with EfficientNet encoder for medical image segmentation.
J Med Imaging (Bellingham). 2022 Nov;9(6):064004. doi: 10.1117/1.JMI.9.6.064004. Epub 2022 Dec 24.
6
COVID-19 Chest CT Image Segmentation Network by Multi-Scale Fusion and Enhancement Operations.
IEEE Trans Big Data. 2021 Feb 2;7(1):13-24. doi: 10.1109/TBDATA.2021.3056564. eCollection 2021 Mar 1.
9
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
Med Phys. 2019 Feb;46(2):576-589. doi: 10.1002/mp.13300. Epub 2018 Dec 17.
10
ET-NET: an ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images.
Multimed Tools Appl. 2022;81(1):31-50. doi: 10.1007/s11042-021-11319-8. Epub 2021 Aug 31.

引用本文的文献

1
A systematic review and knowledge mapping on ICT-based remote and automatic COVID-19 patient monitoring and care.
BMC Health Serv Res. 2023 Sep 30;23(1):1047. doi: 10.1186/s12913-023-10047-z.
2
Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification.
Healthcare (Basel). 2023 Jan 10;11(2):213. doi: 10.3390/healthcare11020213.
3
Hybrid-based framework for COVID-19 prediction via federated machine learning models.
J Supercomput. 2022;78(5):7078-7105. doi: 10.1007/s11227-021-04166-9. Epub 2021 Nov 5.

本文引用的文献

1
Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing.
Internet Things (Amst). 2020 Sep;11:100222. doi: 10.1016/j.iot.2020.100222. Epub 2020 May 12.
2
MiniSeg: An Extremely Minimum Network Based on Lightweight Multiscale Learning for Efficient COVID-19 Segmentation.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8570-8584. doi: 10.1109/TNNLS.2022.3230821. Epub 2024 Jun 3.
3
Realizing an Effective COVID-19 Diagnosis System Based on Machine Learning and IoT in Smart Hospital Environment.
IEEE Internet Things J. 2021 Jan 11;8(21):15919-15928. doi: 10.1109/JIOT.2021.3050775. eCollection 2021 Nov 1.
4
An IoT-Based Deep Learning Framework for Early Assessment of Covid-19.
IEEE Internet Things J. 2020 Oct 27;8(21):15855-15862. doi: 10.1109/JIOT.2020.3034074. eCollection 2021 Nov 1.
5
Hybrid-based framework for COVID-19 prediction via federated machine learning models.
J Supercomput. 2022;78(5):7078-7105. doi: 10.1007/s11227-021-04166-9. Epub 2021 Nov 5.
6
IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification.
Int J Mach Learn Cybern. 2021;12(11):3235-3248. doi: 10.1007/s13042-020-01248-7. Epub 2021 Jan 2.
7
AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system.
Appl Soft Comput. 2021 Jan;98:106897. doi: 10.1016/j.asoc.2020.106897. Epub 2020 Nov 10.
8
A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic.
Future Gener Comput Syst. 2021 Feb;115:1-19. doi: 10.1016/j.future.2020.08.046. Epub 2020 Sep 3.
9
Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images.
IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637. doi: 10.1109/TMI.2020.2996645.
10
eBreCaP: extreme learning-based model for breast cancer survival prediction.
IET Syst Biol. 2020 Jun;14(3):160-169. doi: 10.1049/iet-syb.2019.0087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验