Grimaldi Antoine, Boutin Victor, Ieng Sio-Hoi, Benosman Ryad, Perrinet Laurent U
Aix-Marseille Universit, Institut de Neurosciences de la Timone, CNRS, Marseille, France.
Carney Institute for Brain Science, Brown University, Providence, RI, United States; Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse, Toulouse, France.
Neural Netw. 2024 Oct;178:106415. doi: 10.1016/j.neunet.2024.106415. Epub 2024 Jun 3.
We propose a neuromimetic architecture capable of always-on pattern recognition, i.e. at any time during processing. To achieve this, we have extended an existing event-based algorithm (Lagorce et al., 2017), which introduced novel spatio-temporal features as a Hierarchy Of Time-Surfaces (HOTS). Built from asynchronous events captured by a neuromorphic camera, these time surfaces allow to encode the local dynamics of a visual scene and to create an efficient event-based pattern recognition architecture. Inspired by neuroscience, we have extended this method to improve its performance. First, we add a homeostatic gain control on the activity of neurons to improve the learning of spatio-temporal patterns (Grimaldi et al., 2021). We also provide a new mathematical formalism that allows an analogy to be drawn between the HOTS algorithm and Spiking Neural Networks (SNN). Following this analogy, we transform the offline pattern categorization method into an online and event-driven layer. This classifier uses the spiking output of the network to define new time surfaces and we then perform the online classification with a neuromimetic implementation of a multinomial logistic regression. These improvements not only consistently increase the performance of the network, but also bring this event-driven pattern recognition algorithm fully online. The results have been validated on different datasets: Poker-DVS (Serrano-Gotarredona and Linares-Barranco, 2015), N-MNIST (Orchard, Jayawant et al., 2015) and DVS Gesture (Amir et al., 2017). This demonstrates the efficiency of this bio-realistic SNN for ultra-fast object recognition through an event-by-event categorization process.
我们提出了一种能够进行始终在线模式识别的神经拟态架构,即在处理过程中的任何时刻都能进行识别。为实现这一点,我们扩展了一种现有的基于事件的算法(Lagorce等人,2017年),该算法引入了新颖的时空特征,即时间表面层次结构(HOTS)。这些时间表面由神经形态相机捕获的异步事件构建而成,能够对视觉场景的局部动态进行编码,并创建一个高效的基于事件的模式识别架构。受神经科学启发,我们对该方法进行了扩展以提高其性能。首先,我们对神经元的活动添加了稳态增益控制,以改善时空模式的学习(Grimaldi等人,2021年)。我们还提供了一种新的数学形式,使得能够在HOTS算法和脉冲神经网络(SNN)之间进行类比。基于这种类比,我们将离线模式分类方法转换为在线且基于事件驱动的层。该分类器使用网络的脉冲输出定义新的时间表面,然后我们使用多项式逻辑回归的神经拟态实现进行在线分类。这些改进不仅持续提高了网络的性能,还使这种基于事件驱动的模式识别算法完全实现了在线运行。结果已在不同数据集上得到验证:扑克-DVS(Serrano-Gotarredona和Linares-Barranco,2015年)、N-MNIST(Orchard、Jayawant等人,2015年)和DVS手势(Amir等人,2017年)。这证明了这种生物现实的SNN通过逐个事件的分类过程进行超快速目标识别的效率。