Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.
Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany.
BMC Evol Biol. 2020 Feb 14;20(1):30. doi: 10.1186/s12862-020-1591-0.
Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions.
In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals.
Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.
模块化对于进化创新很重要。通过将现有单元重新组合成具有新功能的更大复合物,可以避免从头开始创建新元素。在蛋白质中,这一原则可以在蛋白质域的水平上观察到,即经常重新排列的功能亚基,以获得新的功能。
在这项研究中,我们以空前的深度和广度分析了五个主要真核生物类群(脊椎动物、昆虫、真菌、单子叶植物和双子叶植物)中导致新结构域排列的机制。这使得首次能够直接比较不同类群之间的重排率,并在结构域重排的背景下确定谱系特异性和普遍的进化模式。我们通过结合可行的单步事件(如融合或裂变)重建祖先域内容来分析沿系统发育树的排列变化。使用这种方法,我们通过追踪它们的前体来解释多达 70%的所有重排。我们发现,一般来说,特定类群的特定模式,特别是特定类群的这些速率的比率,在所有类群中都非常一致。与先前的研究一致,融合是导致新结构域排列的最常见事件。真菌中的谱系特异性模式显示出与其他类群相比异常高的损失率,这支持了最近的研究,强调了损失对于进化创新的重要性。此外,我们的方法允许我们将特定节点的结构域出现与重要的功能发展联系起来,例如哺乳动物毛发的起源。
我们的结果表明,结构域重排基于具有相对较窄且一致范围的速率的一组规范突变事件。此外,关于这些速率的知识可以为基于域的高级系统发生学和同源性分析方法提供基础,这些方法补充了当前基于序列的方法。