Xu Hongyan, Wei Zihan, Verpoort Francis, Hu Jie, Zhuiykov Serge
School of Materials Science & Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
Department of Green Chemistry & Technology, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985, South Korea.
Nanoscale Res Lett. 2020 Feb 17;15(1):41. doi: 10.1186/s11671-020-3273-7.
Nanoscale Au-ZnO heterostructures were fabricated on 4-in. SiO/Si wafers by the atomic layer deposition (ALD) technique. Developed Au-ZnO heterostructures after post-deposition annealing at 250 °C were tested for amperometric hydrogen peroxide (HO) detection. The surface morphology and nanostructure of Au-ZnO heterostructures were examined by field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), etc. Additionally, the electrochemical behavior of Au-ZnO heterostructures towards HO sensing under various conditions is assessed by chronoamperometry and electrochemical impedance spectroscopy (EIS). The results showed that ALD-fabricated Au-ZnO heterostructures exhibited one of the highest sensitivities of 0.53 μA μM cm, the widest linear HO detection range of 1.0 μM-120 mM, a low limit of detection (LOD) of 0.78 μM, excellent selectivity under the normal operation conditions, and great long-term stability. Utilization of the ALD deposition method opens up a unique opportunity for the improvement of the various capabilities of the devices based on Au-ZnO heterostructures for amperometric detection of different chemicals.
通过原子层沉积(ALD)技术在4英寸SiO/Si晶圆上制备了纳米级金-氧化锌异质结构。对在250°C下进行沉积后退火处理后的金-氧化锌异质结构进行了安培型过氧化氢(HO)检测测试。通过场发射扫描电子显微镜(FE-SEM)、拉曼光谱、原子力显微镜(AFM)、X射线光电子能谱(XPS)等对金-氧化锌异质结构的表面形态和纳米结构进行了研究。此外,通过计时电流法和电化学阻抗谱(EIS)评估了金-氧化锌异质结构在各种条件下对HO传感的电化学行为。结果表明,通过ALD制备的金-氧化锌异质结构表现出最高灵敏度之一,为0.53 μA μM cm,线性HO检测范围最宽,为1.0 μM - 120 mM,检测限(LOD)低至0.78 μM,在正常操作条件下具有优异的选择性,并且具有出色的长期稳定性。ALD沉积方法的应用为基于金-氧化锌异质结构的器件在不同化学物质的安培检测方面提升各种性能提供了独特的机会。