Suppr超能文献

基于生物信息学分析鉴定与喉鳞状细胞癌发病机制和预后结局相关的核心生物标志物。

Identification of core biomarkers associated with pathogenesis and prognostic outcomes of laryngeal squamous-cell cancer using bioinformatics analysis.

机构信息

Department of Otolaryngology, Fujian Medical University Union Hospital, 29# Xinquan Road, Fujian, 350001, Fuzhou, China.

Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fujian, 350001, Fuzhou, China.

出版信息

Eur Arch Otorhinolaryngol. 2020 May;277(5):1397-1408. doi: 10.1007/s00405-020-05856-5. Epub 2020 Feb 17.

Abstract

PURPOSE

Despite advances in the treatment of laryngeal squamous-cell carcinoma (LSCC), the survival rate of LSCC remains poor. Thereby, it is urgent to identify novel diagnostic and prognostic biomarkers for LSCC. The study aimed to identify potential core genes associated with the pathogenesis and prognosis of LSCC.

METHODS

Differentially expressed genes between LSCC and normal laryngeal tissue samples were screened by an integrated analysis of data from GEO and TCGA databases. Core genes related to the pathogenesis and prognosis of LSCC were identified by employing protein-protein interaction network and Cox proportional hazards model analyses.

RESULTS

Ten hub genes (AURKA, AURKB, CDC45, KIF2C, NDC80, EXO1, TYMS, RAD51AP1, ITGA3, and UBE2T) that might be highly related to the pathogenesis of LSCC were identified. An eight-gene prognostic signature consisted of ZG16B, STATH, RTN4R, MSRA, CBX8, SLC5A1, EFNB1 and CNTFR was constructed with a good performance in predicting overall survivals.

CONCLUSION

Our findings might shed some new light on the pathogenesis of LSCC and help identify new therapeutic targets of LSCC.

摘要

目的

尽管喉鳞状细胞癌(LSCC)的治疗取得了进展,但 LSCC 的生存率仍然很差。因此,迫切需要确定用于 LSCC 的新的诊断和预后生物标志物。本研究旨在确定与 LSCC 发病机制和预后相关的潜在核心基因。

方法

通过对 GEO 和 TCGA 数据库数据的综合分析,筛选 LSCC 与正常喉组织样本之间的差异表达基因。通过蛋白质-蛋白质相互作用网络和 Cox 比例风险模型分析,确定与 LSCC 发病机制和预后相关的核心基因。

结果

鉴定出 10 个可能与 LSCC 发病机制高度相关的枢纽基因(AURKA、AURKB、CDC45、KIF2C、NDC80、EXO1、TYMS、RAD51AP1、ITGA3 和 UBE2T)。构建了一个由 ZG16B、STATH、RTN4R、MSRA、CBX8、SLC5A1、EFNB1 和 CNTFR 组成的具有良好预测总生存率的 8 基因预后特征。

结论

我们的研究结果可能为 LSCC 的发病机制提供一些新的见解,并有助于确定 LSCC 的新治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验