Suppr超能文献

通过胶束配位矿化制备核壳型聚乙二醇/透明质酸杂化纳米粒子用于肿瘤特异性治疗。

Core/Shell PEGS/HA Hybrid Nanoparticle Via Micelle-Coordinated Mineralization for Tumor-Specific Therapy.

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Mar 11;12(10):12109-12119. doi: 10.1021/acsami.0c00068. Epub 2020 Feb 26.

Abstract

Nanomicelles, by virtue of their prominent biocompatibility, degradability, and ability to solubilize hydrophobic drugs, have been widely used as the most effective delivery platform for anticancer drugs. However, undesirable drug-loading capacity, unfeasible modification, poor in vivo stability, and intratumoral penetration remain to be addressed. Herein, we introduce a novel core/shell PEGylated poly(glycerol sebacate) (PEGS)/hydroxyapatite (HA) hybrid nanomicelle based on a unique triblock PEGS substrate with functional carboxyls in terminals and free hydroxyls as pendant groups. The hydrophobic doxorubicin (DOX) can be controllably encapsulated in the core of nanomicelles via hydrogen bonding, and ensuing in situ mineralization of HA occurs as a shell layer with the electrostatic effect between the carboxylate radical (COO) and calcium ion (Ca). Through optimizing the coordination of PEGS nanomicelles and HA mineralization, 20-30 nm spherical nanoparticles can be formed with considerable drug loading (0.38 mg DOX/1 mg nanoparticles) and a sensitive pH-responsive release (about 50% release amount at pH 5.6 while <5% release amount at pH 7.4 in 24 h). In further in vitro studies, this PEGS/HA hybrid nanoparticle system exhibits excellent selective tumor inhibitory efficacy, while in in vivo studies, high efficacy of tumor suppression and low incidence of toxicity can be evidenced in a DOX-loaded PEGS/HA group (71.7% decrease in average tumor volume compared to a control group after 15 day hypodermic treatment). The core/shell PEGS/HA nanoparticle coordinated with PEGS nanomicelles and in situ HA mineralization represents high drug-loading capacity, multifunctional possibility, and tumor-selective and responsive release profiles and could offer a highly promising platform for tumor therapy in clinical application.

摘要

基于独特的三嵌段聚乙二醇琥珀酸酯(PEGS)基质,带有末端功能化羧基和侧基游离羟基,我们引入了一种新型的核/壳型聚乙二醇化聚(甘油琥珀酸酯)(PEGS)/羟基磷灰石(HA)杂化纳米胶束。疏水性阿霉素(DOX)可通过氢键可控地包裹在纳米胶束的核内,随后在壳层原位形成 HA 矿化,这归因于 COO 和 Ca2+之间的静电作用。通过优化 PEGS 纳米胶束与 HA 矿化的协调作用,可形成 20-30nm 的球形纳米颗粒,具有可观的载药能力(0.38mg DOX/1mg 纳米颗粒)和对 pH 值敏感的释放(在 pH 5.6 时约 50%的释放量,而在 24h 时 pH 7.4 时<5%的释放量)。在进一步的体外研究中,这种 PEGS/HA 杂化纳米颗粒系统表现出优异的肿瘤选择性抑制效果,而在体内研究中,在载 DOX 的 PEGS/HA 组中可证实具有高效的肿瘤抑制作用和低毒性发生率(与对照组相比,15 天皮下治疗后平均肿瘤体积减少 71.7%)。这种与 PEGS 纳米胶束配位的核/壳型 PEGS/HA 纳米颗粒以及原位 HA 矿化代表了高载药能力、多功能性、肿瘤选择性和响应性释放特征,可为临床应用中的肿瘤治疗提供极具前景的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验