Suppr超能文献

IPCO:基于协方差分析的通路推断。

IPCO: Inference of Pathways from Co-variance analysis.

机构信息

APC Microbiome Ireland, University College Cork, Cork, Ireland.

School of Microbiology, University College Cork, Cork, Ireland.

出版信息

BMC Bioinformatics. 2020 Feb 18;21(1):62. doi: 10.1186/s12859-020-3404-2.

Abstract

BACKGROUND

Key aspects of microbiome research are the accurate identification of taxa and the profiling of their functionality. Amplicon profiling based on the 16S ribosomal DNA sequence is a ubiquitous technique to identify and profile the abundance of the various taxa. However, it does not provide information on their encoded functionality. Predictive tools that can accurately extrapolate the functional information of a microbiome based on taxonomic profile composition are essential. At present, the applicability of these tools is limited due to requirement of reference genomes from known species. We present IPCO (Inference of Pathways from Co-variance analysis), a new method of inferring functionality for 16S-based microbiome profiles independent of reference genomes. IPCO utilises the biological co-variance observed between paired taxonomic and functional profiles and co-varies it with the queried dataset.

RESULTS

IPCO outperforms other established methods both in terms of sample and feature profile prediction. Validation results confirmed that IPCO can replicate observed biological associations between shotgun and metabolite profiles. Comparative analysis of predicted functionality profiles with other popular 16S-based functional prediction tools showed significantly lower performances with predicted functionality showing little to no correlation with paired shotgun features across samples.

CONCLUSIONS

IPCO can infer functionality from 16S datasets and significantly outperforms existing tools. IPCO is implemented in R and available from https://github.com/IPCO-Rlibrary/IPCO.

摘要

背景

微生物组研究的关键方面是准确识别分类群并分析其功能。基于 16S 核糖体 DNA 序列的扩增子谱分析是一种普遍的技术,用于识别和分析各种分类群的丰度。然而,它不能提供关于其编码功能的信息。能够根据分类群组成准确推断微生物组功能信息的预测工具是必不可少的。目前,由于需要来自已知物种的参考基因组,这些工具的适用性受到限制。我们提出了 IPCO(基于协方差分析推断途径),这是一种独立于参考基因组推断基于 16S 的微生物组谱功能的新方法。IPCO 利用在配对分类和功能谱之间观察到的生物学协方差,并将其与查询数据集进行协变。

结果

在样本和特征谱预测方面,IPCO 均优于其他已建立的方法。验证结果证实,IPCO 可以复制 shotgun 和代谢物谱之间观察到的生物关联。与其他流行的基于 16S 的功能预测工具的预测功能谱比较分析表明,预测的功能谱与样本中的 shotgun 特征相关性较低或几乎没有相关性。

结论

IPCO 可以从 16S 数据集推断功能,并且明显优于现有工具。IPCO 已在 R 中实现,并可从 https://github.com/IPCO-Rlibrary/IPCO 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed9c/7029613/478c314f7c3e/12859_2020_3404_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验