文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

16S 扩增子和 shotgun 测序在微生物生物多样性发现方面存在大规模差异。

Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing.

机构信息

Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.

Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.

出版信息

Sci Rep. 2017 Jul 31;7(1):6589. doi: 10.1038/s41598-017-06665-3.


DOI:10.1038/s41598-017-06665-3
PMID:28761145
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5537354/
Abstract

Modern metagenomic environmental DNA studies are almost completely reliant on next-generation sequencing, making evaluations of these methods critical. We compare two next-generation sequencing techniques - amplicon and shotgun - on water samples across four of Brazil's major river floodplain systems (Amazon, Araguaia, Paraná, and Pantanal). Less than 50% of phyla identified via amplicon sequencing were recovered from shotgun sequencing, clearly challenging the dogma that mid-depth shotgun recovers more diversity than amplicon-based approaches. Amplicon sequencing also revealed ~27% more families. Overall the amplicon data were more robust across both biodiversity and community ecology analyses at different taxonomic scales. Our work doubles the sampling size in similar environmental studies, and novelly integrates environmental data (e.g., pH, temperature, nutrients) from each site, revealing divergent correlations depending on which data are used. While myriad variants on NGS techniques and bioinformatic pipelines are available, our results point to core differences that have not been highlighted in any studies to date. Given the low number of taxa identified when coupling shotgun data with clade-based taxonomic algorithms, previous studies that quantified biodiversity using such bioinformatic tools should be viewed cautiously or re-analyzed. Nonetheless, shotgun has complementary advantages that should be weighed when designing projects.

摘要

现代宏基因组环境 DNA 研究几乎完全依赖于下一代测序技术,因此对这些方法进行评估至关重要。我们比较了两种下一代测序技术——扩增子和鸟枪法——在巴西四个主要河流泛滥平原系统(亚马逊、阿拉瓜亚、巴拉那和潘塔纳尔)的水样中的应用。从鸟枪法中回收的门的数量不到扩增子测序的 50%,这显然对深度鸟枪法比基于扩增子的方法能回收更多多样性的教条提出了挑战。扩增子测序还揭示了约 27%更多的科。总的来说,在不同的分类尺度上,扩增子数据在生物多样性和群落生态学分析方面都更稳健。我们的工作将类似环境研究中的采样规模扩大了一倍,并创新性地整合了每个地点的环境数据(如 pH 值、温度、养分),根据所使用的数据揭示了不同的相关性。虽然有大量的 NGS 技术和生物信息学管道变体可供选择,但我们的结果指出了迄今为止任何研究都没有强调的核心差异。鉴于与基于进化枝的分类算法结合使用鸟枪法数据时识别出的分类群数量较少,使用此类生物信息学工具量化生物多样性的先前研究应谨慎看待或重新分析。尽管如此,鸟枪法具有互补的优势,在设计项目时应权衡这些优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/e331552c9c52/41598_2017_6665_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/c001954588f3/41598_2017_6665_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/2ccde80a6a26/41598_2017_6665_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/3fd2a661bd1c/41598_2017_6665_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/320cafcb561e/41598_2017_6665_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/dd09b341b579/41598_2017_6665_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/b736f442eec3/41598_2017_6665_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/e331552c9c52/41598_2017_6665_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/c001954588f3/41598_2017_6665_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/2ccde80a6a26/41598_2017_6665_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/3fd2a661bd1c/41598_2017_6665_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/320cafcb561e/41598_2017_6665_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/dd09b341b579/41598_2017_6665_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/b736f442eec3/41598_2017_6665_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf14/5537354/e331552c9c52/41598_2017_6665_Fig7_HTML.jpg

相似文献

[1]
Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing.

Sci Rep. 2017-7-31

[2]
Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome.

OMICS. 2018-4

[3]
Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data.

PLoS One. 2020-2-13

[4]
A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.

BMC Microbiol. 2017-9-13

[5]
Species classifier choice is a key consideration when analysing low-complexity food microbiome data.

Microbiome. 2018-3-20

[6]
RiboTagger: fast and unbiased 16S/18S profiling using whole community shotgun metagenomic or metatranscriptome surveys.

BMC Bioinformatics. 2016-12-22

[7]
Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.

J Microbiol Methods. 2018-11

[8]
A bioinformatics pipeline integrating predictive metagenomics profiling for the analysis of 16S rDNA/rRNA sequencing data originated from foods.

Food Microbiol. 2018-5-24

[9]
A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities.

J Microbiol Methods. 2018-11

[10]
Comparison of four DNA extraction methods for comprehensive assessment of 16S rRNA bacterial diversity in marine biofilms using high-throughput sequencing.

FEMS Microbiol Lett. 2017-8-1

引用本文的文献

[1]
Microbiome diversity of low biomass skin sites is captured by metagenomics but not 16S amplicon sequencing.

bioRxiv. 2025-6-24

[2]
The evaluation of shotgun sequencing and rpoB metabarcoding for taxonomic profiling of bacterial communities.

BMC Microbiol. 2025-7-4

[3]
Tracing non-fungal eukaryotic diversity via shotgun metagenomes in the complex mudflat intertidal zones.

mSystems. 2025-7-22

[4]
Consistent microbial insights across sequencing methods in soil studies: the role of reference taxonomies.

mSystems. 2025-7-22

[5]
Analyzing human gut microbiome data from global populations: challenges and resources.

Trends Microbiol. 2025-6-6

[6]
Implication of Gut Mycobiome and Virome in Type-2 Diabetes Mellitus: Uncovering the Hidden Players.

Phenomics. 2025-4-7

[7]
Refining microbiome diversity analysis by concatenating and integrating dual 16S rRNA amplicon reads.

NPJ Biofilms Microbiomes. 2025-4-12

[8]
Evidence of DNA in shared water sources at livestock-wildlife-human interfaces in KwaZulu-Natal, South Africa.

Front Vet Sci. 2025-2-28

[9]
Rhizosphere microbiome influence on tomato growth under low-nutrient settings.

FEMS Microbiol Ecol. 2025-2-20

[10]
Navigating Past Oceans: Comparing Metabarcoding and Metagenomics of Marine Ancient Sediment Environmental DNA.

Mol Ecol Resour. 2025-8

本文引用的文献

[1]
International Standards for Genomes, Transcriptomes, and Metagenomes.

J Biomol Tech. 2017-4

[2]
A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil.

Microb Ecol. 2017-1

[3]
The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report.

Microbiome. 2016-6-3

[4]
Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics.

Front Microbiol. 2016-4-20

[5]
Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis.

PLoS One. 2016-2-5

[6]
Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing.

Biochem Biophys Res Commun. 2016-1-22

[7]
Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics.

Cell Syst. 2015-7-29

[8]
Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes.

Appl Environ Microbiol. 2015-10-16

[9]
MetaPhlAn2 for enhanced metagenomic taxonomic profiling.

Nat Methods. 2015-10

[10]
Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities.

PLoS One. 2015-6-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索