Department of Child Health, School of Medicine Airlangga University/Dr. Soetomo Hospital, Surabaya, 60286, Indonesia.
Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
BMC Infect Dis. 2020 Feb 18;20(1):151. doi: 10.1186/s12879-020-4875-5.
Early diagnosis of neonatal sepsis is essential to prevent severe complications and avoid unnecessary use of antibiotics. The mortality of neonatal sepsis is over 18%in many countries. This study aimed to develop a predictive model for the diagnosis of bacterial late-onset neonatal sepsis.
A case-control study was conducted at Queen Sirikit National Institute of Child Health, Bangkok, Thailand. Data were derived from the medical records of 52 sepsis cases and 156 non-sepsis controls. Only proven bacterial neonatal sepsis cases were included in the sepsis group. The non-sepsis group consisted of neonates without any infection. Potential predictors consisted of risk factors, clinical conditions, laboratory data, and treatment modalities. The model was developed based on multiple logistic regression analysis.
The incidence of late proven neonatal sepsis was 1.46%. The model had 6 significant variables: poor feeding, abnormal heart rate (outside the range 100-180 x/min), abnormal temperature (outside the range 36-37.9 °C), abnormal oxygen saturation, abnormal leucocytes (according to Manroe's criteria by age), and abnormal pH (outside the range 7.27-7.45). The area below the Receiver Operating Characteristics (ROC) curve was 95.5%. The score had a sensitivity of 88.5% and specificity of 90.4%.
A predictive model and a scoring system were developed for proven bacterial late-onset neonatal sepsis. This simpler tool is expected to somewhat replace microbiological culture, especially in resource-limited settings.
早期诊断新生儿败血症对于预防严重并发症和避免不必要地使用抗生素至关重要。在许多国家,新生儿败血症的死亡率超过 18%。本研究旨在建立一种预测模型,用于诊断细菌性晚发型新生儿败血症。
这是在泰国曼谷的诗丽吉王后国家儿童健康研究所进行的一项病例对照研究。数据来自 52 例败血症病例和 156 例非败血症对照的病历。仅将已确诊的细菌性新生儿败血症病例纳入败血症组。非败血症组由无任何感染的新生儿组成。潜在的预测因子包括危险因素、临床情况、实验室数据和治疗方式。该模型是基于多项逻辑回归分析建立的。
晚发型已确诊新生儿败血症的发生率为 1.46%。该模型有 6 个显著变量:喂养不良、心率异常(不在 100-180 次/分钟范围内)、体温异常(不在 36-37.9°C 范围内)、氧饱和度异常、白细胞异常(根据 Manroe 标准按年龄划分)和 pH 值异常(不在 7.27-7.45 范围内)。受试者工作特征(ROC)曲线下面积为 95.5%。评分的灵敏度为 88.5%,特异性为 90.4%。
已建立了一种用于诊断细菌性晚发型新生儿败血症的预测模型和评分系统。与微生物培养相比,这种更简单的工具预计在资源有限的情况下会有所替代。