Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Elife. 2020 Feb 19;9:e51156. doi: 10.7554/eLife.51156.
Information processing in cortical neuronal networks relies on properly balanced excitatory and inhibitory neurotransmission. A ubiquitous motif for maintaining this balance is the somatostatin interneuron (SOM-IN) feedback microcircuit. Here, we investigated the modulation of this microcircuit by presynaptic GABA receptors (GABARs) in the rodent hippocampus. Whole-cell recordings from SOM-INs revealed that both excitatory and inhibitory synaptic inputs are strongly inhibited by GABARs, while optogenetic activation of the interneurons shows that their inhibitory output is also strongly suppressed. Electron microscopic analysis of immunogold-labelled freeze-fracture replicas confirms that GABARs are highly expressed presynaptically at both input and output synapses of SOM-INs. Activation of GABARs selectively suppresses the recruitment of SOM-INs during gamma oscillations induced in vitro. Thus, axonal GABARs are positioned to efficiently control the input and output synapses of SOM-INs and can functionally uncouple them from local network with implications for rhythmogenesis and the balance of entorhinal versus intrahippocampal afferents.
皮质神经元网络中的信息处理依赖于适当平衡的兴奋性和抑制性神经递质传递。维持这种平衡的普遍模式是生长抑素中间神经元 (SOM-IN) 反馈微电路。在这里,我们研究了在啮齿动物海马体中,突触前 GABA 受体 (GABAR) 对这种微电路的调制。来自 SOM-IN 的全细胞记录显示,兴奋性和抑制性突触输入都被 GABAR 强烈抑制,而中间神经元的光遗传学激活表明其抑制性输出也被强烈抑制。免疫金标记的冷冻断裂复制品的电子显微镜分析证实,GABAR 在前突触高度表达于 SOM-IN 的输入和输出突触。GABAR 的激活选择性地抑制了体外诱导的γ振荡期间 SOM-IN 的募集。因此,轴突 GABAR 被定位为能够有效地控制 SOM-IN 的输入和输出突触,并可以将它们与局部网络在功能上解耦,这对节律发生和内侧海马体传入的平衡具有影响。