Department of Organismal Biology & Anatomy, University of Chicago, 1027 E. 57th St., Chicago, IL, 60637, USA.
Biomedical Engineering Program, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon.
Nat Commun. 2020 Feb 19;11(1):952. doi: 10.1038/s41467-020-14738-7.
Neurons regulate their intrinsic physiological properties, which could influence network properties and contribute to behavioral plasticity. Recording from adult zebra finch brain slices we show that within each bird basal ganglia Area X-projecting (HVC) neurons share similar spike waveform morphology and timing of spike trains, with modeling indicating similar magnitudes of five principal ion currents. These properties vary among birds in lawful relation to acoustic similarity of the birds' songs, with adult sibling pairs (same songs) sharing similar waveforms and spiking characteristics. The properties are maintained dynamically: HVC within juveniles learning to sing show variable properties, whereas the uniformity rapidly degrades within hours in adults singing while exposed to abnormal (delayed) auditory feedback. Thus, within individual birds the population of current magnitudes covary over the arc of development, while rapidly responding to changes in feedback (in adults). This identifies network interactions with intrinsic properties that affect information storage and processing of learned vocalizations.
神经元调节其内在的生理特性,这可能会影响网络特性,并有助于行为可塑性。我们从成年斑马雀脑片中记录到,在每只鸟的基底神经节 Area X 投射(HVC)神经元中,其尖峰波形形态和尖峰序列的时间具有相似性,模型表明,五种主要离子电流的幅度相似。这些特性在鸟类中以合法的方式与鸟类歌曲的声学相似性相关,成年的兄弟姐妹(相同的歌曲)具有相似的波形和尖峰特征。这些特性是动态维持的:正在学习唱歌的幼鸟的 HVC 显示出可变的特性,而在暴露于异常(延迟)听觉反馈的情况下,成年鸟在数小时内快速退化。因此,在单个鸟类中,电流幅度的种群在发育过程中变化,而在反馈变化时(在成年时)迅速做出反应。这确定了与内在特性相互作用的网络,这些特性影响学习发声的信息存储和处理。