Suppr超能文献

HVC微回路:歌曲运动与发声可塑性通路之间相互作用的突触基础。

The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways.

作者信息

Mooney Richard, Prather Jonathan F

机构信息

Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA.

出版信息

J Neurosci. 2005 Feb 23;25(8):1952-64. doi: 10.1523/JNEUROSCI.3726-04.2005.

Abstract

Synaptic interactions between telencephalic neurons innervating descending motor or basal ganglia pathways are essential in the learning, planning, and execution of complex movements. Synaptic interactions within the songbird telencephalic nucleus HVC are implicated in motor and auditory activity associated with learned vocalizations. HVC contains projection neurons (PNs) (HVC(RA)) that innervate song premotor areas, other PNs (HVC(X)) that innervate a basal ganglia pathway necessary for vocal plasticity, and interneurons (HVC(INT)). During singing, HVC(RA) fire in temporally sparse bursts, possibly because of HVC(INT)-HVC(RA) interactions, and a corollary discharge can be detected in the basal ganglia pathway, likely because of synaptic transmission from HVC(RA) to HVC(X) cells. During song playback, local interactions, including inhibition onto HVC(X) cells, shape highly selective responses that distinguish HVC from its auditory afferents. To better understand the synaptic substrate for the motor and auditory properties of HVC, we made intracellular recordings from pairs of HVC neurons in adult male zebra finch brain slices and used spike-triggered averages to assess synaptic connectivity. A major synaptic interaction between the PNs was a disynaptic inhibition from HVC(RA) to HVC(X), which could link song motor signals in the two outputs of HVC and account for some of the song playback-evoked inhibition in HVC(X) cells. Furthermore, single interneurons made divergent connections onto PNs of both types, and either PN type could form reciprocal connections with interneurons. In these two regards, the synaptic architecture of HVC resembles that described in some pattern-generating networks, underscoring features likely to be important to singing and song learning.

摘要

支配下行运动或基底神经节通路的端脑神经元之间的突触相互作用,对于复杂运动的学习、计划和执行至关重要。鸣禽端脑核团HVC内的突触相互作用,与学习发声相关的运动和听觉活动有关。HVC包含投射神经元(PNs)(HVC(RA)),其支配歌曲运动前区;其他投射神经元(HVC(X)),其支配发声可塑性所必需的一条基底神经节通路;以及中间神经元(HVC(INT))。在唱歌时,HVC(RA)以时间上稀疏的爆发形式放电,可能是由于HVC(INT)-HVC(RA)相互作用,并且在基底神经节通路中可以检测到伴随放电,可能是由于从HVC(RA)到HVC(X)细胞的突触传递。在歌曲回放期间,局部相互作用,包括对HVC(X)细胞的抑制,塑造了高度选择性的反应,从而将HVC与其听觉传入区分开来。为了更好地理解HVC的运动和听觉特性的突触基础,我们在成年雄性斑胸草雀脑片上对成对的HVC神经元进行了细胞内记录,并使用触发尖峰平均值来评估突触连接性。投射神经元之间的主要突触相互作用是从HVC(RA)到HVC(X)的双突触抑制,这可以将HVC的两个输出中的歌曲运动信号联系起来,并解释HVC(X)细胞中一些歌曲回放诱发的抑制。此外,单个中间神经元与两种类型的投射神经元形成发散连接,并且任何一种投射神经元类型都可以与中间神经元形成相互连接。在这两个方面,HVC的突触结构类似于在一些模式生成网络中所描述的,突出了对唱歌和歌曲学习可能很重要的特征。

相似文献

1
The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways.
J Neurosci. 2005 Feb 23;25(8):1952-64. doi: 10.1523/JNEUROSCI.3726-04.2005.
3
Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch.
J Neurosci. 2000 Jul 15;20(14):5420-36. doi: 10.1523/JNEUROSCI.20-14-05420.2000.
4
Neuron-specific cholinergic modulation of a forebrain song control nucleus.
J Neurophysiol. 2010 Feb;103(2):733-45. doi: 10.1152/jn.00803.2009. Epub 2009 Nov 25.
5
Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song.
J Neurosci. 2008 Mar 26;28(13):3479-89. doi: 10.1523/JNEUROSCI.0177-08.2008.
6
Neuronal Intrinsic Physiology Changes During Development of a Learned Behavior.
eNeuro. 2017 Oct 20;4(5). doi: 10.1523/ENEURO.0297-17.2017. eCollection 2017 Sep-Oct.
7
Sleep-related spike bursts in HVC are driven by the nucleus interface of the nidopallium.
J Neurophysiol. 2007 Jan;97(1):423-35. doi: 10.1152/jn.00547.2006. Epub 2006 Sep 27.
8
Development of intrinsic and synaptic properties in a forebrain nucleus essential to avian song learning.
J Neurosci. 1997 Dec 1;17(23):8997-9009. doi: 10.1523/JNEUROSCI.17-23-08997.1997.
9
Experience-Dependent Intrinsic Plasticity During Auditory Learning.
J Neurosci. 2019 Feb 13;39(7):1206-1221. doi: 10.1523/JNEUROSCI.1036-18.2018. Epub 2018 Dec 12.
10
Rhythmic activity in a forebrain vocal control nucleus in vitro.
J Neurosci. 2005 Mar 16;25(11):2811-22. doi: 10.1523/JNEUROSCI.5285-04.2005.

引用本文的文献

1
Holistic Motor Control of Zebra Finch Song Syllable Sequences.
bioRxiv. 2025 May 5:2025.05.04.652139. doi: 10.1101/2025.05.04.652139.
2
Synaptic connectivity of sensorimotor circuits for vocal imitation in the songbird.
Elife. 2025 Jun 23;14:RP104609. doi: 10.7554/eLife.104609.
3
Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model.
PLoS One. 2025 Apr 28;20(4):e0314690. doi: 10.1371/journal.pone.0314690. eCollection 2025.
4
Differential behavioral engagement of inhibitory interneuron subtypes in the zebra finch brain.
Neuron. 2025 Feb 5;113(3):460-470.e7. doi: 10.1016/j.neuron.2024.11.003. Epub 2024 Dec 6.
5
Model of the HVC neural network as a song motor in zebra finch.
Front Comput Neurosci. 2024 Nov 20;18:1417558. doi: 10.3389/fncom.2024.1417558. eCollection 2024.
6
A corollary discharge circuit in human speech.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2404121121. doi: 10.1073/pnas.2404121121. Epub 2024 Dec 3.
7
Discovering plasticity rules that organize and maintain neural circuits.
bioRxiv. 2024 Nov 18:2024.11.18.623688. doi: 10.1101/2024.11.18.623688.
9
Millisecond-scale motor coding precedes sensorimotor learning in songbirds.
bioRxiv. 2024 Dec 22:2024.09.27.615500. doi: 10.1101/2024.09.27.615500.
10
Unsupervised restoration of a complex learned behavior after large-scale neuronal perturbation.
Nat Neurosci. 2024 Jun;27(6):1176-1186. doi: 10.1038/s41593-024-01630-6. Epub 2024 Apr 29.

本文引用的文献

1
Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons.
Neural Comput. 2005 Mar;17(3):557-608. doi: 10.1162/0899766053019908.
2
Calcium-binding proteins define interneurons in HVC of the zebra finch (Taeniopygia guttata).
J Comp Neurol. 2005 Feb 28;483(1):76-90. doi: 10.1002/cne.20403.
3
Synaptic transformations underlying highly selective auditory representations of learned birdsong.
J Neurosci. 2004 Aug 18;24(33):7251-65. doi: 10.1523/JNEUROSCI.0947-04.2004.
4
5
A new dynamic model of the cortico-basal ganglia loop.
Prog Brain Res. 2004;143:461-6. doi: 10.1016/S0079-6123(03)43043-4.
7
State and neuronal class-dependent reconfiguration in the avian song system.
J Neurophysiol. 2003 Mar;89(3):1688-701. doi: 10.1152/jn.00655.2002.
8
Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms.
J Neurosci. 2002 Dec 15;22(24):10580-92. doi: 10.1523/JNEUROSCI.22-24-10580.2002.
9
Intrinsic and synaptic properties of neurons in an avian thalamic nucleus during song learning.
J Neurophysiol. 2002 Oct;88(4):1903-14. doi: 10.1152/jn.2002.88.4.1903.
10
An ultra-sparse code underlies the generation of neural sequences in a songbird.
Nature. 2002 Sep 5;419(6902):65-70. doi: 10.1038/nature00974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验