Suppr超能文献

ESCRT-III复合物力学性质与膜活性的分子模拟

Molecular Simulation of Mechanical Properties and Membrane Activities of the ESCRT-III Complexes.

作者信息

Mandal Taraknath, Lough Wilson, Spagnolie Saverio E, Audhya Anjon, Cui Qiang

机构信息

Department of Chemistry, Boston University, Boston, Massachusetts.

Department of Mathematics.

出版信息

Biophys J. 2020 Mar 24;118(6):1333-1343. doi: 10.1016/j.bpj.2020.01.033. Epub 2020 Feb 4.

Abstract

The endosomal sorting complex required for transport (ESCRT) machinery carries out the membrane scission reactions that are required for many biological processes throughout cells. How ESCRTs bind and deform cellular membranes and ultimately produce vesicles has been a matter of active research in recent years. In this study, we use fully atomistic molecular dynamics simulations to scrutinize the structural details of a filament composed of Vps32 protomers, a major component of ESCRT-III complexes. The simulations show that both hydrophobic and electrostatic interactions between monomers help maintain the structural stability of the filament, which exhibits an intrinsic bend and twist. Our findings suggest that the accumulation of bending and twisting stresses as the filament elongates on the membrane surface likely contributes to the driving force for membrane invagination. The filament exposes a large cationic surface that senses the negatively charged lipids in the membrane, and the N-terminal amphipathic helix of the monomers not only acts as a membrane anchor but also generates significant positive membrane curvature. Taking all results together, we discuss a plausible mechanism for membrane invagination driven by ESCRT-III.

摘要

转运所需的内体分选复合体(ESCRT)机制执行整个细胞中许多生物过程所需的膜分裂反应。近年来,ESCRT如何结合并使细胞膜变形并最终产生囊泡一直是活跃的研究课题。在本研究中,我们使用全原子分子动力学模拟来仔细研究由Vps32原体组成的细丝的结构细节,Vps32原体是ESCRT-III复合体的主要成分。模拟结果表明,单体之间的疏水相互作用和静电相互作用都有助于维持细丝的结构稳定性,该细丝呈现出固有的弯曲和扭曲。我们的研究结果表明,随着细丝在膜表面上伸长,弯曲和扭曲应力的积累可能有助于膜内陷的驱动力。细丝暴露了一个大的阳离子表面,该表面可感知膜中带负电荷的脂质,并且单体的N端两亲性螺旋不仅充当膜锚,还会产生明显的正膜曲率。综合所有结果,我们讨论了一种由ESCRT-III驱动的膜内陷的合理机制。

相似文献

4
Assembly and disassembly of the ESCRT-III membrane scission complex.ESCRT-III 膜分裂复合物的组装和拆卸。
FEBS Lett. 2011 Oct 20;585(20):3191-6. doi: 10.1016/j.febslet.2011.09.001. Epub 2011 Sep 9.
7
ESCRTs breach the nuclear border.内体分选转运复合体(ESCRTs)突破核边界。
Nucleus. 2015;6(3):197-202. doi: 10.1080/19491034.2015.1035844. Epub 2015 May 5.
9

引用本文的文献

2
Delineating the shape of COat Protein complex-II coated membrane bud.描绘II型被膜小泡包被膜芽的形状。
PNAS Nexus. 2024 Jul 26;3(8):pgae305. doi: 10.1093/pnasnexus/pgae305. eCollection 2024 Aug.
4
Modelling membrane reshaping by staged polymerization of ESCRT-III filaments.通过 ESCRT-III 丝的阶段性聚合来模拟膜重塑。
PLoS Comput Biol. 2022 Oct 17;18(10):e1010586. doi: 10.1371/journal.pcbi.1010586. eCollection 2022 Oct.
5
Molecular Dynamics Simulations of Curved Lipid Membranes.弯曲脂质膜的分子动力学模拟。
Int J Mol Sci. 2022 Jul 22;23(15):8098. doi: 10.3390/ijms23158098.
6
Snf7 spirals sense and alter membrane curvature.Snf7 螺旋感知并改变膜曲率。
Nat Commun. 2022 Apr 21;13(1):2174. doi: 10.1038/s41467-022-29850-z.
7
Protein-induced membrane curvature in coarse-grained simulations.粗粒化模拟中的蛋白诱导膜弯曲。
Biophys J. 2021 Aug 3;120(15):3211-3221. doi: 10.1016/j.bpj.2021.05.029. Epub 2021 Jun 29.
8
A Structural View on ESCRT-Mediated Abscission.关于ESCRT介导的分裂的结构观点。
Front Cell Dev Biol. 2020 Nov 9;8:586880. doi: 10.3389/fcell.2020.586880. eCollection 2020.

本文引用的文献

5
Domes and cones: Adhesion-induced fission of membranes by ESCRT proteins.穹顶和锥体:ESCRT 蛋白诱导的膜黏附分裂。
PLoS Comput Biol. 2018 Aug 21;14(8):e1006422. doi: 10.1371/journal.pcbi.1006422. eCollection 2018 Aug.
9
ESCRT-dependent cargo sorting at multivesicular endosomes.多泡体(endosome)中依赖 ESCRT 的货物分拣。
Semin Cell Dev Biol. 2018 Feb;74:4-10. doi: 10.1016/j.semcdb.2017.08.020. Epub 2017 Aug 8.
10
Reverse-topology membrane scission by the ESCRT proteins.ESCRT蛋白介导的反向拓扑膜切割
Nat Rev Mol Cell Biol. 2017 Jan;18(1):5-17. doi: 10.1038/nrm.2016.121. Epub 2016 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验