Singh Komudi, Baird Michelle, Fischer Robert, Chaitankar Vijender, Seifuddin Fayaz, Chen Yun-Ching, Tunc Ilker, Waterman Clare M, Pirooznia Mehdi
Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Cancers (Basel). 2020 Feb 17;12(2):458. doi: 10.3390/cancers12020458.
Melanoma is among the most malignant cutaneous cancers and when metastasized results in dramatically high mortality. Despite advances in high-throughput gene expression profiling in cancer transcriptomic studies, our understanding of mechanisms driving melanoma progression is still limited. We present here an in-depth bioinformatic analysis of the melanoma RNAseq, chromatin immunoprecipitation (ChIP)seq, and single-cell (sc)RNA seq data to understand cancer progression. Specifically, we have performed a consensus network analysis of RNA-seq data from clinically re-grouped melanoma samples to identify gene co-expression networks that are conserved in early (stage 1) and late (stage 4/invasive) stage melanoma. Overlaying the fold-change information on co-expression networks revealed several coordinately up or down-regulated subnetworks that may play a critical role in melanoma progression. Furthermore, by incorporating histone lysine-27 acetylation information and highly expressed genes identified from the single-cell RNA data from melanoma patient samples, we present a comprehensive list of pathways, putative protein-protein interactions (PPIs) and transcription factor (TF) networks that are driving cancer progression. From this analysis, we have identified Elk1, AP1 and E12 TF networks that coordinately change expression in late melanoma when compared to early melanoma, implicating these TFs in melanoma progression. Additionally, the sumoylation-associated interactome is upregulated in invasive melanoma. Together, this bioinformatic analysis potentially implicates a combination of TF networks and PPIs in melanoma progression, which if confirmed in the experimental systems, could be used as targets for drug intervention in melanoma.
黑色素瘤是最恶性的皮肤癌之一,发生转移时会导致极高的死亡率。尽管癌症转录组学研究中的高通量基因表达谱分析取得了进展,但我们对驱动黑色素瘤进展机制的理解仍然有限。我们在此对黑色素瘤的RNA测序、染色质免疫沉淀(ChIP)测序和单细胞(sc)RNA测序数据进行深入的生物信息学分析,以了解癌症进展。具体而言,我们对临床重新分组的黑色素瘤样本的RNA测序数据进行了共识网络分析,以识别在早期(1期)和晚期(4期/侵袭性)黑色素瘤中保守的基因共表达网络。将倍数变化信息叠加到共表达网络上,揭示了几个协同上调或下调的子网络,这些子网络可能在黑色素瘤进展中起关键作用。此外,通过整合组蛋白赖氨酸-27乙酰化信息和从黑色素瘤患者样本的单细胞RNA数据中鉴定出的高表达基因,我们列出了驱动癌症进展的通路、推定的蛋白质-蛋白质相互作用(PPI)和转录因子(TF)网络的综合列表。通过这项分析,我们确定了与早期黑色素瘤相比,在晚期黑色素瘤中表达协同变化的Elk1、AP1和E12 TF网络,表明这些TF与黑色素瘤进展有关。此外,在侵袭性黑色素瘤中,与SUMO化相关的相互作用组上调。总之,这项生物信息学分析可能暗示TF网络和PPI的组合在黑色素瘤进展中起作用,如果在实验系统中得到证实,可作为黑色素瘤药物干预的靶点。