Suppr超能文献

KIKI-net:用于重建欠采样磁共振图像的跨域卷积神经网络。

KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.

机构信息

School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea.

Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Magn Reson Med. 2018 Nov;80(5):2188-2201. doi: 10.1002/mrm.27201. Epub 2018 Apr 6.

Abstract

PURPOSE

To demonstrate accurate MR image reconstruction from undersampled k-space data using cross-domain convolutional neural networks (CNNs) METHODS: Cross-domain CNNs consist of 3 components: (1) a deep CNN operating on the k-space (KCNN), (2) a deep CNN operating on an image domain (ICNN), and (3) an interleaved data consistency operations. These components are alternately applied, and each CNN is trained to minimize the loss between the reconstructed and corresponding fully sampled k-spaces. The final reconstructed image is obtained by forward-propagating the undersampled k-space data through the entire network.

RESULTS

Performances of K-net (KCNN with inverse Fourier transform), I-net (ICNN with interleaved data consistency), and various combinations of the 2 different networks were tested. The test results indicated that K-net and I-net have different advantages/disadvantages in terms of tissue-structure restoration. Consequently, the combination of K-net and I-net is superior to single-domain CNNs. Three MR data sets, the T fluid-attenuated inversion recovery (T FLAIR) set from the Alzheimer's Disease Neuroimaging Initiative and 2 data sets acquired at our local institute (T FLAIR and T weighted), were used to evaluate the performance of 7 conventional reconstruction algorithms and the proposed cross-domain CNNs, which hereafter is referred to as KIKI-net. KIKI-net outperforms conventional algorithms with mean improvements of 2.29 dB in peak SNR and 0.031 in structure similarity.

CONCLUSION

KIKI-net exhibits superior performance over state-of-the-art conventional algorithms in terms of restoring tissue structures and removing aliasing artifacts. The results demonstrate that KIKI-net is applicable up to a reduction factor of 3 to 4 based on variable-density Cartesian undersampling.

摘要

目的

展示使用跨域卷积神经网络(CNN)从欠采样 k 空间数据中准确重建磁共振图像。

方法

跨域 CNN 由 3 个部分组成:(1)在 k 空间(KCNN)上运行的深度 CNN,(2)在图像域(ICNN)上运行的深度 CNN,以及(3)交错的数据一致性操作。这些组件交替应用,每个 CNN 都经过训练以最小化重建和相应完全采样 k 空间之间的损失。最终的重建图像是通过向前传播欠采样的 k 空间数据通过整个网络获得的。

结果

测试了 K-net(带逆傅里叶变换的 KCNN)、I-net(带交错数据一致性的 ICNN)和这两种不同网络的各种组合。测试结果表明,K-net 和 I-net 在组织结构恢复方面具有不同的优缺点。因此,K-net 和 I-net 的组合优于单域 CNN。使用了 3 个磁共振数据集,即阿尔茨海默病神经影像学倡议的 T 液衰减反转恢复(T FLAIR)数据集和我们当地研究所采集的 2 个数据集(T FLAIR 和 T 加权),来评估 7 种常规重建算法和提出的跨域 CNN(后称为 KIKI-net)的性能。KIKI-net 在峰值信噪比方面平均提高了 2.29dB,在结构相似性方面提高了 0.031,优于传统算法。

结论

KIKI-net 在恢复组织结构和消除混叠伪影方面优于最先进的传统算法。结果表明,KIKI-net 在基于可变密度笛卡尔欠采样的情况下,可适用于 3 到 4 倍的降采样率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验