Suppr超能文献

超过 2500 个癌症基因组中的乘客突变:整体分子功能影响和后果。

Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences.

机构信息

Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Yale School of Medicine, Yale University, New Haven, CT 06510, USA.

出版信息

Cell. 2020 Mar 5;180(5):915-927.e16. doi: 10.1016/j.cell.2020.01.032. Epub 2020 Feb 20.

Abstract

The dichotomous model of "drivers" and "passengers" in cancer posits that only a few mutations in a tumor strongly affect its progression, with the remaining ones being inconsequential. Here, we leveraged the comprehensive variant dataset from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project to demonstrate that-in addition to the dichotomy of high- and low-impact variants-there is a third group of medium-impact putative passengers. Moreover, we also found that molecular impact correlates with subclonal architecture (i.e., early versus late mutations), and different signatures encode for mutations with divergent impact. Furthermore, we adapted an additive-effects model from complex-trait studies to show that the aggregated effect of putative passengers, including undetected weak drivers, provides significant additional power (∼12% additive variance) for predicting cancerous phenotypes, beyond PCAWG-identified driver mutations. Finally, this framework allowed us to estimate the frequency of potential weak-driver mutations in PCAWG samples lacking any well-characterized driver alterations.

摘要

癌症中“驱动者”和“乘客”的二分模型假设,肿瘤中只有少数突变会强烈影响其进展,而其余的突变则无足轻重。在这里,我们利用了 ICGC/TCGA 全基因组泛癌症分析(PCAWG)项目中的全面变异数据集,证明除了高影响和低影响变异的二分法之外,还有第三组中等影响的假定乘客。此外,我们还发现,分子影响与亚克隆结构相关(即早期和晚期突变),不同的特征编码具有不同影响的突变。此外,我们从复杂性状研究中采用了一种加性效应模型,表明假定乘客(包括未检测到的弱驱动突变)的累积效应,除了 PCAWG 确定的驱动突变之外,为预测癌症表型提供了显著的额外能力(约 12%的加性方差)。最后,该框架允许我们估计 PCAWG 样本中缺乏任何特征明确的驱动改变的潜在弱驱动突变的频率。

相似文献

2
Pan-cancer analysis of whole genomes.泛癌症全基因组分析。
Nature. 2020 Feb;578(7793):82-93. doi: 10.1038/s41586-020-1969-6. Epub 2020 Feb 5.
5
Impact of deleterious passenger mutations on cancer progression.有害乘客突变对癌症进展的影响。
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2910-5. doi: 10.1073/pnas.1213968110. Epub 2013 Feb 6.

引用本文的文献

本文引用的文献

6
Recurrent and functional regulatory mutations in breast cancer.乳腺癌中的复发性和功能性调控突变。
Nature. 2017 Jul 6;547(7661):55-60. doi: 10.1038/nature22992. Epub 2017 Jun 28.
9
Role of non-coding sequence variants in cancer.非编码序列变异在癌症中的作用。
Nat Rev Genet. 2016 Feb;17(2):93-108. doi: 10.1038/nrg.2015.17. Epub 2016 Jan 19.
10
The Path to Cancer --Three Strikes and You're Out.通向癌症之路——三击出局。
N Engl J Med. 2015 Nov 12;373(20):1895-8. doi: 10.1056/NEJMp1508811.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验