School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
Cells. 2020 Feb 18;9(2):467. doi: 10.3390/cells9020467.
As a key element of genome editing, donor DNA introduces the desired exogenous sequence while working with other crucial machinery such as CRISPR-Cas or recombinases. However, current methods for the delivery of donor DNA into cells are both inefficient and complicated. Here, we developed a new methodology that utilizes rolling circle replication and Cas9 mediated (RC-Cas-mediated) in vivo single strand DNA (ssDNA) synthesis. A single-gene rolling circle DNA replication system from Gram-negative bacteria was engineered to produce circular ssDNA from a Gram-positive parent plasmid at a designed sequence in . Furthermore, it was demonstrated that the desired linear ssDNA fragment could be cut out using CRISPR-associated protein 9 (CRISPR-Cas9) nuclease and combined with lambda Red recombinase as donor for precise genome engineering. Various donor ssDNA fragments from hundreds to thousands of nucleotides in length were synthesized in cells, allowing successive genome editing in growing cells. We hope that this RC-Cas-mediated in vivo ssDNA on-site synthesis system will be widely adopted as a useful new tool for dynamic genome editing.
作为基因组编辑的关键要素,供体 DNA 与 CRISPR-Cas 或重组酶等其他关键机制一起引入所需的外源序列。然而,目前将供体 DNA 递送到细胞中的方法既低效又复杂。在这里,我们开发了一种新的方法,利用滚环复制和 Cas9 介导(RC-Cas 介导)的体内单链 DNA(ssDNA)合成。从革兰氏阴性细菌中设计了一种单基因滚环 DNA 复制系统,以在设计的序列处从革兰氏阳性亲本质粒产生圆形 ssDNA。此外,证明可以使用 CRISPR 相关蛋白 9(CRISPR-Cas9)核酸酶切割所需的线性 ssDNA 片段,并与 lambda Red 重组酶结合作为供体用于精确的基因组工程。在 细胞中合成了数百到数千个核苷酸长度的各种供体 ssDNA 片段,允许在生长的细胞中进行连续的基因组编辑。我们希望这种 RC-Cas 介导的体内 ssDNA 原位合成系统将被广泛采用,作为动态基因组编辑的有用新工具。